开学活动
搜索
    上传资料 赚现金

    2021-2022学年度沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)

    2021-2022学年度沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第3页
    还剩33页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共36页。试卷主要包含了已知⊙O的半径为4,,则点A在,将一把直尺等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.
    2、如图,是的直径,弦,垂足为,若,则( )

    A.5 B.8 C.9 D.10
    3、下列叙述正确的有( )个.
    (1)随着的增大而增大;
    (2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
    (3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
    (4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
    (5)以为三边长度的三角形,不是直角三角形.
    A.0 B.1 C.2 D.3
    4、已知⊙O的半径为4,,则点A在( )
    A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
    5、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )

    A.64° B.52° C.42° D.36°
    6、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    7、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )

    A.36 cm B.27 cm C.24 cm D.15 cm
    8、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    9、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    10、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.
    2、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    3、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.

    4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则______.

    5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.


    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.

    (1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;
    (2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;
    (3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.
    2、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.

    (1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.
    (2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
    (3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.
    3、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.

    (1)如图1,当、、三点共线时,连接,若,求的长;
    (2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;
    (3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.
    4、如图,是的直径,四边形内接于,是的中点,交的延长线于点.

    (1)求证:是的切线;
    (2)若,,求的长.
    5、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
    (2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.


    -参考答案-
    一、单选题
    1、D
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,

    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴SΔOBC=12OB·OC=12BC·OF,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    2、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,

    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得


    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    3、D
    【分析】
    根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
    【详解】
    当或者时,随着的增大而增大,故(1)不正确;
    如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
    ∵圆的直径所对的圆周角为直角
    ∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
    三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


    ∴以为三边长度的三角形,是直角三角形,故(5)错误;
    故选:D.
    【点睛】
    本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
    4、C
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    5、B
    【分析】
    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
    【详解】
    解:∵CC′∥AB,
    ∴∠ACC′=∠CAB=64°
    ∵△ABC在平面内绕点A旋转到△AB′C′的位置,
    ∴∠CAC′等于旋转角,AC=AC′,
    ∴∠ACC′=∠AC′C=64°,
    ∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
    ∴旋转角为52°.
    故选:B.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    6、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、C
    【分析】
    连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
    【详解】
    解:连接,过点作于点,交于点,如图所示:

    则,
    的直径为,

    在中,,

    即水的最大深度为,
    故选:C.
    【点睛】
    本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    8、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    9、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    10、C
    【分析】
    如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.
    【详解】
    解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,

    由题意可得AB垂直平分线段OK,
    ∴AO=AK,OH=HK=3,
    ∵OA=OK,
    ∴OA=OK=AK,
    ∴∠OAK=∠AOK=60°,
    ∴AH=OA×sin60°=6×=3,
    ∵OH⊥AB,
    ∴AH=BH,
    ∴AB=2AH=6,
    ∵OC+OH⩾CT,
    ∴CT⩽6+3=9,
    ∴CT的最大值为9,
    ∴△ABC的面积的最大值为=27,
    故选:C.
    【点睛】
    本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.
    二、填空题
    1、在⊙A上
    【分析】
    先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.
    【详解】
    解:∵点A的坐标为(4,3),
    ∴OA==5,
    ∵半径为5,
    ∴OA=r,
    ∴点O在⊙A上.
    故答案为:在⊙A上.
    【点睛】
    本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔d>r;当点P在圆上⇔d=r;当点P在圆内⇔d<r.
    2、35°
    【分析】
    根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
    ∴∠AOD=∠BOC=30°,AO=DO,
    ∵∠AOC=100°,
    ∴∠BOD=100°−30°×2=40°,
    ∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
    故答案为:35°.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    3、
    【分析】
    根据弓形的面积=扇形的面积-三角形的面积求解即可.
    【详解】
    解:如图,AC⊥OB,

    ∵圆心角为60°,OA=OB,
    ∴△OAB是等边三角形,
    ∴OC=OB=1,
    ∴AC=,
    ∴S△OAB=OB×AC=×2×=,
    ∵S扇形OAB==,
    ∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
    故答案为:.
    【点睛】
    本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
    4、
    【分析】
    根据旋转角相等可得,进而勾股定理求解即可
    【详解】
    解:四边形是正方形

    将绕点B顺时针方向旋转,能与重合,


    故答案为:
    【点睛】
    本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.
    5、6
    【分析】
    如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
    【详解】
    解:如图,连接OA、OB、OC、OD、OE、OF.
    ∵正六边形ABCDEF,
    ∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
    ∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
    ∵的周长为,
    ∴的半径为,
    正六边形的边长是6;

    【点睛】
    本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
    三、解答题
    1、
    (1)135°
    (2)∠MOP-∠NOQ=30°,理由见解析
    (3)s或s.
    【分析】
    (1)先根据OP平分得到∠PON,然后求出∠BOP即可;
    (2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;
    (3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.
    (1)
    解:∵OP平分∠MON
    ∴∠PON=∠MON=45°
    ∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.
    故答案是135°
    (2)
    解:∠MOP-∠NOQ=30°,理由如下:
    ∵∠MON=90°,∠POQ=60°
    ∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,
    ∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.
    (3)
    解:∵射线OC平分,射线OD平分
    ∴∠NOC=45°,∠POD=30°
    ∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°
    ∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°
    ∴此时OC与OE的夹角165-(180-45-2×33)=96°
    OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒
    设在OC与OD第二次相遇前,当时,需要旋转时间为t
    ①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s
    ②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s
    然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象
    ∵C、D第二次相遇需要时间72秒
    ∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.

    【点睛】
    本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.
    2、
    (1),证明见解析
    (2)成立,证明见解析
    (3)
    【分析】
    (1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;
    (2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;
    (3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.
    (1)
    解:,证明如下:
    设,
    在中,,

    由旋转的性质得:,
    ,和都是等边三角形,


    是等边三角形,


    (2)
    解:成立,证明如下:
    如图,在上截取,连接,

    由旋转的性质得:,


    在和中,,





    (3)
    解:如图,当点三点在一条直线上时,

    由旋转的性质得:,

    在和中,,


    则旋转角.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
    3、(1);(2);证明见解析;(3)
    【分析】
    (1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;
    (2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;
    (3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值
    【详解】
    (1)过点作于点,如图

    将绕点顺时针旋转120°,得到,


    是等边三角形










    在中,,

    (2)如图,延长至,使得,连接,过点作,交于点,

    点是的中点


    四边形是平行四边形


    将绕点顺时针旋转120°,得到,


    是等边三角形


    ,,
    是等边三角形



    设,则,






    ,
    是等边三角形




    (3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,


    四点共圆

    由(2)可知,




    将绕点顺时针旋转120°,得到,


    是的中点,
    是的中位线





    是等腰直角三角形




    四边形是矩形


    在中,

    ,

    在中,

    在中



    【点睛】
    本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.
    4、(1)见详解;(2)
    【分析】
    (1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得OD∥BC,进而即可得到结论;
    (2)连接AC,交OD于点F,利用勾股定理可得AC,,再证明四边形DFCE是矩形,进而即可求解.
    【详解】
    (1)证明:连接OD,

    ∵是的中点,
    ∴∠ABC=2∠ABD,
    ∵∠AOD=2∠ABD,
    ∴∠AOD=∠ABC,
    ∴OD∥BC,
    ∵,
    ∴,
    ∴是的切线;
    (2)连接AC,交OD于点F,

    ∵AB是直径,
    ∴∠ACB=90°,
    ∴AC=,
    ∵是的中点,
    ∴OD⊥AC,AF=CF=3,
    ∴,
    ∴DF=5-4=1,
    ∵∠E=∠EDF=∠DFC=90°,
    ∴四边形DFCE是矩形,
    ∴DE=CF=3,CE=DF=1,
    ∴,
    ∴AD=CD=,
    ∵∠ADB=90°,

    【点睛】
    本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.
    5、(1)作图见解析;(2)
    【分析】
    (1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
    (2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.
    【详解】
    解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;

    (2)如图所示,连接CD和OD,
    由题意,AD为⊙O的切线,
    ∵OC⊥AC,且OC为半径,
    ∴AC为⊙O的切线,
    ∴AC=AD,
    ∴∠ACD=∠ADC,
    ∵CD=BD,
    ∴∠B=∠DCB,
    ∵∠ADC=∠B+∠BCD,
    ∴∠ACD=∠ADC=2∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    即:3∠DCB=90°,
    ∴∠DCB=30°,
    ∵OC=OD,
    ∴∠DCB=∠ODC=30°,
    ∴∠COD=180°-2×30°=120°,
    ∵∠DCB=∠B=30°,
    ∴在Rt△ABC中,∠BAC=60°,
    ∵AO平分∠BAC,
    ∴∠CAO=∠DAO=30°,
    ∴在Rt△ACO中,,
    ∴.

    【点睛】
    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.

    相关试卷

    2020-2021学年第24章 圆综合与测试课时作业:

    这是一份2020-2021学年第24章 圆综合与测试课时作业,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试同步测试题:

    这是一份数学九年级下册第24章 圆综合与测试同步测试题,共30页。

    九年级下册第24章 圆综合与测试同步练习题:

    这是一份九年级下册第24章 圆综合与测试同步练习题,共29页。试卷主要包含了下列说法正确的个数有,等边三角形,下列语句判断正确的是等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map