


初中沪科版第25章 投影与视图综合与测试一课一练
展开沪科版九年级数学下册第25章投影与视图难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )
A. B.
C. D.
2、下列物体的左视图是圆的为( )
A.足球 B. 水杯
C. 圣诞帽 D. 鱼缸
3、如图,从正面看这个几何体得到的图形是( )
A. B.
C. D.
4、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )
A. B.
C. D.
5、如图是一个几何体的实物图,则其主视图是( )
A. B. C. D.
6、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )
A. B.
C. D.
7、下列物体中,三视图都是圆的是( )
A. B.
C. D.
8、如图,图形从三个方向看形状一样的是( )
A. B.
C. D.
9、如图所示几何体的左视图是( )
A. B.
C. D.
10、如图所示的几何体的主视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要_________个小正方体木块,最多需要_________个小正方体木块.
2、一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为______.(结果保留)
3、若干个相同的小正方体组成的几何体的主视图和左视图如图所示则组成这个几何体的小正方体最多为______个.
4、用小立方块搭一几何体,它的主视图和俯视图如图所示,这个几何体最少要_____个立方块,最多要______个立方块.
5、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为_____cm2.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.
2、如图所示是一个用小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图.
3、如图,是由若干个完全相同的小正方体组成的一个几何体.
(1)请画出这个几何体的从左面看和从上面看的形状图;(用阴影表示)
(2)已知每个小正方体的边长是2cm,求出这个几何体的表面积是多少?
4、一个几何体是由若干个棱长为1cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示:
(1)该几何体最少由_______个小立方体组成,最多由_______个小立方体组成.
(2)将该几何体形状固定好,当几何体体积达到最大时,画出此时的主视图并求出几何体的表面积.
5、如图是由4块小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示该位置小立方块的个数,请画出它的左视图和主视图.
-参考答案-
一、单选题
1、C
【分析】
根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.
【详解】
解:、主视图、俯视图都是正方形,故不符合题意;
、主视图、俯视图都是矩形,故不符合题意;
、主视图是三角形、俯视图是圆形,故符合题意;
、主视图、俯视图都是圆,故不符合题意;
故选:C.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图.
2、A
【分析】
根据左视图是指从物体左面向右面正投影得到的投影图,即可求解.
【详解】
解:A、左视图为圆,故本选项符合题意;
B、左视图为长方形,故本选项不符合题意;
C、左视图为三角形,故本选项不符合题意;
D、左视图为长方形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
3、A
【分析】
首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.
【详解】
解:观察图形从左到右小正方块的个数分别为1,2,1,
故选A.
【点睛】
本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键.
4、B
【分析】
根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.
【详解】
解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,
故选B.
【点睛】
本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.
5、C
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.
故选:C.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
6、C
【分析】
细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可.
【详解】
解:从左边看,是左边3个正方形,右边一个正方形.
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
7、C
【分析】
根据主视图、左视图、俯视图的判断方法,逐项进行判断即可.
【详解】
A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;
B. 圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;
C.球的三视图都是圆,符合题意;
D.正方体的三视图都是正方形,不符合题意.
故选:C.
【点睛】
题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键.
8、C
【分析】
根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.
【详解】
解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;
B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;
C.从三个方向看形状一样,都是圆形,故本选项符合题意;
D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.
故选:C.
【点睛】
本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.
9、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
10、A
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看,如图:
故选:A.
【点睛】
此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键.
二、填空题
1、10 16
【分析】
综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块.
【详解】
解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,
故这个几何体最少有10个小正方形,最多有16个,
故答案为:10,16.
【点睛】
本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果.
2、
【分析】
根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,相加即可得出该几何体的全面积.
【详解】
解:由图示可知,圆锥的高为4,底面圆的直径为6,
∴圆锥的母线为:,
∴圆锥的侧面积为:,
底面圆的面积为:,
∴该几何体的全面积为:,
故答案为:.
【点睛】
此题主要考查了由三视图判断几何体,圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.
3、5
【分析】
易得此组合体有两层,判断出各层最多有几个正方体组成即可.
【详解】
解:底层正方体最多有4个正方体,第二层最多有1个正方体,所以组成这个几何体的小正方体的个数最多有5个.
故答案是:5.
【点睛】
本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最多正方体的个数.
4、
【分析】
依据主视图可得俯视图中各位置小正方体的个数,进而得到这个几何体中正方体最少和最多的个数.
【详解】
由主视图可得,这个几何体(第2列,第3列组合不唯一)最少要1+3+4=8个立方块;
由主视图可得,这个几何体最多要1+4+6=11个立方块;
故答案为:8,11.
【点睛】
本题主要考查三视图判断几何体,解题时应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
5、
【分析】
有顺序的计算上下面,左右面,前后面的表面积之和即可.
【详解】
解:4×2+3×2+4×2=22(cm2).
所以该几何体的表面积为22cm2.
故答案为:22.
【点睛】
此题考查了几何体的表面积计算,解题的关键是分别判断出各个视图中小正方形的个数.
三、解答题
1、图见解析.
【分析】
根据左视图和俯视图的画法即可得.
【详解】
解:画图如下:
【点睛】
本题考查了左视图和俯视图,熟练掌握左视图(是指从左面观察物体所得到的图形)和俯视图(是指从上面观察物体所得到的图形)的画法是解题关键.
2、见解析
【分析】
根据简单组合体的三视图的意义和画法画出相应的图形即可.
【详解】
这个组合体的三视图如下:
【点睛】
本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的关键.
3、
(1)见解析
(2)152cm2.
【分析】
(1)左视图3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1,;
(2)先数出各个面小正方形的个数,再乘每个小正方形的面积可计算出表面积.
(1)
如图所示:
(2)
(2×2)×(6×6+2)
=4×38
=152(cm2).
故这个几何体的表面积是152cm2.
【点睛】
本题考查作图-三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
4、(1)9;14;(2)画图见解析;几何体的表面积为.
【分析】
(1)根据左视图,俯视图,分别在俯视图上写出最少,最多两种情形的小正方体的个数即可解决问题;
(2)根据立方体的体积公式即可判断,分上下,左右,前后三个方向判断出正方形的个数解决问题即可.
【详解】
解:(1)观察图象可知:最少的情形有2+3+1+1+1+1=9个小正方体,
最多的情形有2+2+3+3+3+1=14个小正方体,
故答案为9,14;
(2)该几何体体积最大值为33×14=378(cm3),
体积最大时的几何体的三视图如下:
因此这个组合体的表面积为(9+6+6)×2+4=46(cm2),
故答案为:46cm2.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.
5、见解析
【分析】
根据已知图形得出实际摆放,进而利用从正面和左面观察得出图形即可.
【详解】
解:如图所示:
【点睛】
本题主要考查了画三视图,解题的关键件是根据已知正确得出图形的三视图.
初中数学沪科版九年级下册第25章 投影与视图综合与测试精练: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试精练,共20页。试卷主要包含了下面图形是某几何体的三视图,图中几何体的左视图是,下列立体图形的主视图是等内容,欢迎下载使用。
沪科版九年级下册第24章 圆综合与测试课时训练: 这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共42页。试卷主要包含了如图,点A等内容,欢迎下载使用。
沪科版九年级下册第25章 投影与视图综合与测试课后作业题: 这是一份沪科版九年级下册第25章 投影与视图综合与测试课后作业题,共19页。试卷主要包含了如图,身高1.5米的小明.,下面图形是某几何体的三视图,如图,该几何体的俯视图是,如图所示的礼品盒的主视图是等内容,欢迎下载使用。