【真题汇总卷】2022年四川达州市中考数学第二次模拟试题(含答案及详解)
展开2022年四川达州市中考数学第二次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).
A. B.
C. D.
2、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
3、若反比例函数的图象经过点,则该函数图象不经过的点是( )
A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)
4、如图,与交于点,与互余,,则的度数为( )
A. B. C. D.
5、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
6、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
7、下列方程中,解为的方程是( )
A. B. C. D.
8、下列说法中,正确的是( )
A.东边日出西边雨是不可能事件.
B.抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.
C.投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.
D.小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.
9、如图,的三个顶点和它内部的点,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,…,,把分成( )个互不重叠的小三角形.
A. B. C. D.
10、已知的两个根为、,则的值为( )
A.-2 B.2 C.-5 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果在A点处观察B点的仰角为,那么在B点处观察A点的俯角为_______(用含的式子表示)
2、如图,海中有一个小岛A,一艘轮船由西向东航行,在点处测得小岛A在它的北偏东方向上,航行12海里到达点处,测得小岛A在它的北偏东方向上,那么小岛A到航线的距离等于____________海里.
3、最简二次根式3与是同类二次根式,则x的值是 ___.
4、方程(x﹣3)(x+4)=﹣10的解为 ___.
5、如图,,,,,,则_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,平面直角坐标系中,已知点,,,是的边上任意一点,经过平移后得到△,点的对应点为.
(1)直接写出点,,的坐标.
(2)在图中画出△.
(3)连接,,,求的面积.
(4)连接,若点在轴上,且三角形的面积为8,请直接写出点的坐标.
2、如图,点 A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:
①存在无数个中点四边形MNPQ是平行四边形;
②存在无数个中点四边形MNPQ是菱形
③存在无数个中点四边形MNPQ是矩形
④存在无数个中点四边形MNPQ是正方形
所有正确结论的序号是___.
3、用若干大小相同的小正方体搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示,请你按此要求搭建一个几何体,画出从左边看到的它的形状图,并在从上面看得到的图形上标注小正方形的个数.
4、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.
解方程组:.
解:①,得③,第一步,
②③,得,第二步,
.第三步,
将代入①,得.第四步,
所以,原方程组的解为.第五步.
填空:
(1)这种求解二元一次方程组的方法叫做______.
、代入消元法
、加减消元法
(2)第______步开始出现错误,具体错误是______;
(3)直接写出该方程组的正确解:______.
5、由几个小立方体搭成的几何体从上面看得到的形状图如图所示,小正方形中的数字表示在该位置的小立方体的个数,请画出从正面、左面看到的这个几何体的形状图.
-参考答案-
一、单选题
1、B
【分析】
先判断再结合一次函数,二次函数的增减性逐一判断即可.
【详解】
解:
同理:
当时,随的增大而减小,
由可得随的增大而增大,故A不符合题意;
的对称轴为: 图象开口向下,
当时,随的增大而减小,故B符合题意;
由可得随的增大而增大,故C不符合题意;
的对称轴为: 图象开口向上,
时,随的增大而增大,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.
2、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点
3、A
【分析】
由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.
【详解】
解:因为反比例函数的图象经过点,
所以,
选项A,该函数图象不经过的点(1,4),故选项A符合题意;
选项B,该函数图象经过的点(2,-2),故选项B不符合题意;
选项C,该函数图象经过的点(4,-1),故选项C不符合题意;
选项B,该函数图象经过的点(1,-4),故选项D不符合题意;
故选A.
【点睛】
考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.
4、B
【分析】
先由与互余,求解 再利用对顶角相等可得答案.
【详解】
解:与互余,
,
,
,
,
故选:B.
【点睛】
本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.
5、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
6、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
7、B
【分析】
把x=5代入各个方程,看看是否相等即可
【详解】
解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;
B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;
C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;
D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;
故选:B
【点睛】
本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键
8、D
【分析】
根据概率的意义进行判断即可得出答案.
【详解】
解:A、东边日出西边雨是随机事件,故此选项错误;.
B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;
C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;
D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.
故选:D
【点睛】
此题主要考查了概率的意义,正确理解概率的意义是解题关键.
9、B
【分析】
从前三个内部点可总结规律,即可得三角形内部有n个点时有个互不重叠的小三角形.
【详解】
由,,三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,
∴的三个顶点和它内部的点,,,…,,把分成个互不重叠的小三角形.
故选:B.
【点睛】
本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解.
10、B
【分析】
直接运用一元二次方程根与系数的关系求解即可.
【详解】
解:∵的两个根为、,
∴
故选:B
【点睛】
本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.
二、填空题
1、
【分析】
根据题意作出图形,然后找出相应的仰角和俯角,利用平行线的性质即可求解.
【详解】
解:如图所示:在A点处观察B点的仰角为,即,
∵,
∴,
∴在B点处观察A点的俯角为,
故答案为:.
【点睛】
题目主要考查仰角和俯角及平行线的性质,理解题意,作出相应的图形是解题关键.
2、
【分析】
如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,可得∠ABD=30°,∠ACD=60°,∠CAD=30°,根据外角性质可得∠BAC=30°,可得AC=BC,根据含30°角的直角三角形的性质可得出CD的长,利用勾股定理即可求出AD的长,可得答案.
【详解】
如图,过点A作AD⊥BC于D,
根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,BC=12,
∴∠ABD=30°,∠ACD=60°,∠CAD=30°,
∴∠BAC=∠ACD-∠ABD=30°,
∴AC=BC=12,
∴CD=AC=6,
∴AD===.
故答案为:
【点睛】
本题考查方向角的定义、三角形外角性质、含30°角的直角三角形的性质及勾股定理,三角形的一个外角,等于和它不相邻的两个内角的和;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定义是解题关键.
3、
【分析】
由同类二次根式的定义可得再解方程即可.
【详解】
解:最简二次根式3与是同类二次根式,
解得:
故答案为:
【点睛】
本题考查的是同类二次根式的含义,掌握“利用同类二次根式的定义求解字母参数的值”是解本题的关键.
4、
【分析】
先把方程化为一元二次方程的一般形式,再利用因式分解法解方程即可.
【详解】
解:(x﹣3)(x+4)=﹣10
或
解得:
故答案为:
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“利用十字乘法把方程的左边分解因式化为两个一次方程”是解本题的关键.
5、17
【分析】
由“”可证,可得,,即可求解.
【详解】
解:,
,
在和中,
,
,
,,
,
故答案为:17.
【点睛】
本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.
三、解答题
1、
(1),,
(2)见解析
(3)的面积=6
(4)或
【分析】
(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1,B1,C1的坐标;
(2)利用点A1,B1,C1的坐标描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA1的面积;
(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.
(1)
解:,,;
(2)
解:如图,△为所作;
(3)
解:的面积
,
,
;
(4)
解:设,
,,
,
三角形的面积为8,
,解得或,
点的坐标为或.
【点睛】
本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
2、①②③
【分析】
根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.
【详解】
解:∵一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,
∴存在无数个中点四边形MNPQ是平行四边形,存在无数个中点四边形MNPQ是菱形,存在无数个中点四边形MNPQ是矩形.
故答案为:①②③
【点睛】
本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
3、见解析
【分析】
观察从正面看和从上面看得到的图形可知,从左边看到的图形应该有2层3列,画出图形即可;再根据从左边看到的它的形状图,判断小正方体数量,并在从上面看得到的图形上标注小正方形的个数即可.
【详解】
(答案不唯一)
从左边看到的它的形状图,如图,
从上面看得到的图形上标注小正方形的个数,如图,
【点睛】
本题考查从不同方向看几何体,判断几何体的组成.根据题意确定从左边看到的层数和列数是解答本题的关键.
4、
(1)B
(2)二;应该等于
(3)
【分析】
(1)②−③消去了x,得到了关于y的一元一次方程,所以这是加减消元法;
(2)第二步开始出现错误,具体错误是−3y−(−4y)应该等于y;
(3)解方程组即可.
(1)
解:②③消去了,得到了关于的一元一次方程,
故答案为:;
(2)
解:第二步开始出现错误,具体错误是应该等于,
故答案为:二;应该等于;
(3)
解:②③得,
将代入①,得:,
原方程组的解为.
故答案为:.
【点睛】
本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
5、作图见详解
【分析】
根据简单组合体的三视图画出相应的图形即可.
【详解】
解:从正面看到的该几何体的形状如图所示:
从左面看到的该几何体的形状如图所示:
【点睛】
本题考查简单组合体的三视图,理解“长对正,宽相等,高平齐”画三视图的关键.
【真题汇总卷】2022年唐山迁安市中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【真题汇总卷】2022年唐山迁安市中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了下列各题去括号正确的是.,下列运算中,正确的是,如果,那么的取值范围是,化简的结果是等内容,欢迎下载使用。
【真题汇总卷】2022年四川省成都市中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇总卷】2022年四川省成都市中考数学模拟真题测评 A卷(含答案详解),共22页。试卷主要包含了下列二次根式中,不能与合并的是,若抛物线的顶点坐标为等内容,欢迎下载使用。
【真题汇总卷】2022年中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【真题汇总卷】2022年中考数学真题模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了二次函数 y=ax2+bx+c,已知和是同类项,那么的值是,下列说法正确的是等内容,欢迎下载使用。