【历年真题】2022年石家庄晋州市中考数学二模试题(含答案解析)
展开2022年石家庄晋州市中考数学二模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列变形中,正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
2、是-2的( ) .
A.相反数 B.绝对值 C.倒数 D.以上都不对
3、计算12a2b4•(﹣)÷(﹣)的结果等于( )
A.﹣9a B.9a C.﹣36a D.36a
4、在,,,中,最大的是( )
A. B. C. D.
5、如图,反比例函数图象经过矩形边的中点,交边于点,连接、、,则的面积是( )
A. B. C. D.
6、若分式的值为0,则x的值是( )
A.3或﹣3 B.﹣3 C.0 D.3
7、多项式与多项式相加后,不含二次项,则常数m的值是( )
A.2 B. C. D.
8、在,,, ,中,负数的个数有( ).
A.个 B.个 C.个 D.个
9、分式方程有增根,则m为( )
A.0 B.1 C.3 D.6
10、如果是一元二次方程的一个根,那么常数是( )
A.2 B.-2 C.4 D.-4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的最简公分母是_______________.
2、根据下列各式的规律,在横线处填空:,,,,……, -______=_______.
3、实数a、b互为相反数,c、d互为倒数,x的绝对值为,则=_______.
4、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.
5、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是________.
三、解答题(5小题,每小题10分,共计50分)
1、某商场销售一种小商品,进货价为8元/件.当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为(元/件)(的整数),每天销售利润为(元).
(1)直接写出与的函数关系式为:_________;
(2)若要使每天销售利润为270元,求此时的销售单价;
(3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润的取值范围.
2、对于点M,N,给出如下定义:在直线MN上,若存在点P,使得 ,则称点P是“点M到点N的k倍分点”.
例如:如图,点Q1,Q2,Q3在同一条直线上, Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的 倍分点,点Q1是点Q3到点 Q2的3倍分点.
已知:在数轴上,点A,B,C分别表示-4,-2,2.
(1)点B是点A到点C的______倍分点,点C是点B到点A的______倍分点;
(2)点B到点C的3倍分点表示的数是______;
(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.
3、如图,一高尔夫球从山坡下的点处打出一球,球向山坡上的球洞点处飞去,球的飞行路线为抛物线.如果不考虑空气阻力,当球达到最大高度时,球移动的水平距离为.已知山坡与水平方向的夹角为30°,、两点间的距离为.
(1)建立适当的直角坐标系,求这个球的飞行路线所在抛物线的函数表达式.
(2)这一杆能否把高尔夫球从点处直接打入点处球洞?
4、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90°得到图形,那么图形称为图形D关于点P的“垂直图形”.已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点.
(1)请写出:点的坐标为____________;点的坐标为____________;
(2)请求出经过点A、B、的二次函数解析式;
(3)请直接写出经过点A、B、的抛物线的表达式为____________.
5、解方程:
(1)
(2)
-参考答案-
一、单选题
1、B
【分析】
根据等式的性质,对选项逐个判断即可.
【详解】
解:选项A,若,当时,不一定成立,故错误,不符合题意;
选项B,若,两边同时除以,可得,正确,符合题意;
选项C,将分母中的小数化为整数,得,故错误,不符合题意;
选项D,方程变形为,故错误,不符合题意;
故选B.
【点睛】
此题考查了等式的性质,熟练掌握等式的有关性质是解题的关键.
2、D
【分析】
根据相反数、绝对值、倒数的定义进行解答即可.
【详解】
解:,-2的相反数是2,-2的绝对值是2,-2的倒数是-,
所以以上答案都不对.
故选D.
【点睛】
本题考查相反数、绝对值、倒数,掌握相反数、绝对值、倒数的定义是解题的关键..
3、D
【分析】
通过约分化简进行计算即可.
【详解】
原式=12a2b4•(﹣)·(﹣)
=36a.
故选D.
【点睛】
本题考点:分式的化简.
4、B
【分析】
根据绝对值及乘方进行计算比较即可.
【详解】
,,,,
,,,中,最大的是.
故选:B.
【点睛】
本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键.
5、B
【分析】
连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AOE=S△COF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则S△BEF=S△OCF=0.75,最后由S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF,得出结果.
【详解】
连接OB.
∵E、F是反比例函数y=﹣(x>0)图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=1.5.
∵矩形OABC边AB的中点是E,∴S△BOE=S△AOE=1.5,S△BOC=S△AOB=3,∴S△BOF=S△BOC﹣S△COF=3﹣1.5=1.5,∴F是BC的中点,∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣1.5﹣1.5﹣0.5×1.5=.
故选B.
【点睛】
本题主要考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.得出点F为BC的中点是解决本题的关键.
6、A
【分析】
根据分式的值为零的条件可以求出x的值.
【详解】
依题意得:x2﹣9=0且x≠0,解得x=±3.
故选A.
【点睛】
本题考查了分式的值等于0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
7、B
【分析】
合并同类项后使得二次项系数为零即可;
【详解】
解析:,当这个多项式不含二次项时,有,解得.
故选B.
【点睛】
本题主要考查了合并同类项的应用,准确计算是解题的关键.
8、A
【分析】
根据负数的定义:小于0的数是负数作答.
【详解】
解:五个数,,, ,,化简为,,, ,+2.
所以有2个负数.
故选:A.
【点睛】
本题考查负数的概念,判断一个数是正数还是负数,要把它化为最简形式再判断.概念:大于0的数是正数,小于0的是负数.
9、C
【分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的值,让最简公分母x−3=0,得到x=3,然后代入整式方程算出m的值.
【详解】
解:方程两边都乘x−3,得x+x-3=m
∵原方程有增根,
∴最简公分母x−3=0,
解得x=3,
将x=3代入x+x-3=m,得m=3,
故m的值是3.
故选C.
【点睛】
本题考查了分式方程的增根.增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
10、C
【分析】
一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
【详解】
把x=2代入方程x2=c可得:c=4.
故选C.
【点睛】
本题考查的是一元二次方程的根即方程的解的定义.
二、填空题
1、
【分析】
确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
【详解】
解:的分母分别是xy、4x3、6xyz,故最简公分母是.
故答案为.
【点睛】
本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.
2、
【分析】
观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数.
【详解】
解:∵
……
∴
故答案为:;
【点睛】
本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.
3、6±
【详解】
解:∵a、b互为相反数,c、d互为倒数,x的绝对值为,
∴a+b=0,cd=1,x=±,
当x=时,原式=5+(0+1)×+0+1=6+;
当x=−时,原式=5+(0+1)×(−)+0+1=6−.
故答案为6±.
4、π
【分析】
根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.
【详解】
如图,连接CO,
∵AB=BC,CD=DE,
∴∠BOC+∠COD=∠AOB+∠DOE=90°,
∵AE=4,
∴AO=2,
∴S阴影==π.
【点睛】
本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.
5、(每两个3之间依次多一个“1”),
【分析】
无理数:即无限不循环小数,据此回答即可.
【详解】
解:,,
无理数有:(每两个3之间依次多一个“1”),
故答案为:(每两个3之间依次多一个“1”),.
【点睛】
此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,(每两个之间一次多个)等形式.
三、解答题
1、
(1)
(2)销售单价为或元
(3)
【分析】
(1)销售单价为元/件时,每件的利润为元,此时销量为,由此计算每天的利润即可;
(2)根据题意结合(1)的结论,建立一元二次方程求解即可;
(3)首先求出利润不超过时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可.
(1)
由题意得,
∴与的函数关系式为:;
(2)
由题意得:,
解得,
∵,
∴销售单价为或元;
(3)
∵每件小商品利润不超过,
∴,得,
∴小商品的销售单价为,
由(1)得,
∵对称轴为直线,
∴在对称轴的左侧,且随着的增大而增大,
∴当时,取得最大值,此时,
当时,取得最小值,此时
即该小商品每天销售利润的取值范围为.
【点睛】
本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.
2、
(1);
(2)1或4
(3)-3≤x≤5
【分析】
(1)根据“倍分点”的定义进行判断即可;
(2)根据“倍分点”的定义进行解答;
(3)根据“倍分点”的定义,分两种情况列出关于x的一元一次方程,解得x的值即可;
(1)
解:由题意得,AB=2,BC=4,AC=6
∴AB=BC,BC=AC
∴点B是点A到点C的倍分点,点C是点B到点A的倍分点;
故答案为:;
(2)
解:设3倍分点为M,则BM=3CM,
若M在B左侧,则BM<CM,不成立;
若M在BC之间,则有BM+CM=BC=4,
∵BM=3CM
∴4CM=4,
CM=1
∴M点为1;
若M在C点右侧,则有BC+CM=BM
∵BM=3CM,BC=4
∴CM=2
所以M点为4
综上所述,点B到点C的3倍分点表示的数是1或4;
故答案为:1或4
(3)
解:当2倍分点为B时,x取得最小值,
此时AB=2(-2-x)=2
解得:x=-3
当2倍分点为C点且D点在C点右侧时,x取得最大值
此时AC=2(x-2)=6
解得x=5
所以-3≤x≤5;
【点睛】
本题主要考查两点间的距离,一元一次方程的应用,注意分类讨论的思想是解题的关键.
3、
(1)坐标系见解析,y=−x2+x
(2)不能
【分析】
(1)首先根据题意建立平面直角坐标系,分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;
(2)求出点A的坐标,把点A的横坐标x=12代入抛物线解析式,看函数值与点A的纵坐标是否相符.
(1)
建立平面直角坐标系如图,
∵顶点B的坐标是(9,12),
∴设抛物线的解析式为y=a(x-9)2+12,
∵点O的坐标是(0,0)
∴把点O的坐标代入得:
0=a(0-9)2+12,
解得a=−,
∴抛物线的解析式为y=−(x-9)2+12
即y=−x2+x;
(2)
在Rt△AOC中,
∵∠AOC=30°,OA=8,
∴AC=OA•sin30°=8×=4,
OC=OA•cos30°=8×=12.
∴点A的坐标为(12,4),
∵当x=12时,y=,
∴这一杆不能把高尔夫球从O点直接打入球洞A点.
【点睛】
本题考查了二次函数解析式的确定方法,及点的坐标与函数解析式的关系.
4、
(1)(1,2);(1,0)
(2)
(3)
【分析】
(1)根据旋转的性质得出,;
(2)利用待定系数法进行求解解析式即可;
(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案.
(1)
解:根据题意作下图:
根据旋转的性质得:,,
,,
故答案是:(1,2);(1,0);
(2)
解:设过点A、B、的二次函数解析式为:,
将点分别代入中得:
,
解得:,
;
(3)
解:设过点A、B、的二次函数解析式为:,
将点分别代入中得:
,
解得:,
;
故答案为:.
【点睛】
本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式.
5、
(1)2
(2)
【分析】
(1)先去括号,再移项,合并同类项,最后把未知数的系数化“1”即可;
(2)先去分母,再去括号,移项,合并同类项,最后把未知数的系数化“1”即可.
(1)
解:
去括号得:
移项,合并同类项得:
解得:
(2)
解:
去分母得:
去括号得:
移项合并同类项得:
解得:
【点睛】
本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.
【真题汇总卷】2022年石家庄晋州市中考数学二模试题(含答案详解): 这是一份【真题汇总卷】2022年石家庄晋州市中考数学二模试题(含答案详解),共24页。试卷主要包含了的相反数是,计算的值为,某玩具店用6000元购进甲,分式方程有增根,则m为,已知等腰三角形的两边长满足+等内容,欢迎下载使用。
【真题汇总卷】2022年石家庄晋州市中考数学一模试题(含答案及解析): 这是一份【真题汇总卷】2022年石家庄晋州市中考数学一模试题(含答案及解析),共18页。试卷主要包含了如果,且,那么的值一定是 .,下列计算,下列运算中,正确的是等内容,欢迎下载使用。
【历年真题】2022年河北石家庄市晋州市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】2022年河北石家庄市晋州市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了已知,,,则等内容,欢迎下载使用。