数学第25章 投影与视图综合与测试随堂练习题
展开沪科版九年级数学下册第25章投影与视图章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体的主视图是( )
A. B. C. D.
2、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )
A.6 B.7 C.10 D.1
3、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=( )
A.7.2 B.6.6 C.5.7 D.7.5
4、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
5、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是( )
A.个 B.个 C.个 D.个
6、一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是( )
A. B. C. D.
7、如图,图形从三个方向看形状一样的是( )
A. B.
C. D.
8、下列几何体的主视图和俯视图完全相同的是( )
A. B. C. D.
9、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为( )
A. B.
C. D.
10、图中几何体的左视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_____.
2、一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为______个.
3、如图,一个正方体由64块大小相同的小正方体搭成,现从中取走若干个小立方体块,得到一个新的几何体,新几何体与原几何体的三视图(从正面、从左面、从上面看到的所搭几何体的形状图)相同,最多取走___块小立方体块.
4、长方体的长为,宽为,高为,点离点,一只蚂蚁如果要沿着长方体的表面从点爬到点去吃一滴蜜糖,需要爬行的最短距离是_________.
5、用小立方体搭一个几何体,分别从它的正面、上面看到的形状如图所示,这样的几何体最少需要 _____个小立方体;最多需要 _____个小立方体.
三、解答题(5小题,每小题10分,共计50分)
1、根据要求完成下列题目.
(1)图中有_____块小正方体.
(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影).
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要____个小正方体,最多要____个小正方体.
2、如图所示的几何体是由几个相同的小正方体排成3行组成的.
(1)填空:这个几何体由 个小正方体组成;
(2)画出该几何体的三个视图.(用阴影图形表示)
3、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.
4、一个物体由几个相同的正方体堆叠成,从三个不同方向观察得到的图形如图所示,试回答下面的问题:
(1)该物体共有几层?
(2)一共需要几个正方体叠成?
5、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)
(2)画出图2实物的三视图.
-参考答案-
一、单选题
1、B
【分析】
根据主视图即从物体的正面观察进而得出答案.
【详解】
解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,
故选:
【点睛】
本题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.
2、C
【分析】
从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.
【详解】
解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.
由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.
因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.
故选:C.
【点睛】
题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.
3、D
【分析】
设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可.
【详解】
解:∵AE⊥OD,OG⊥OD,
∴AE//OG,
∴∠AEB=∠OGB,∠EAB=∠GOB,
∴△AEB∽△OGB,
∴,即 ,
解得:AB=2m;
∵OA所在的直线行走到点C时,人影长度增长3米,
∴DC=AB+3=5m,OD=OA+AC+CD=AC+10,
∵FC∥GO,
∴∠CFD=∠OGD,∠FCD=∠GOD,
△DFC∽△DGO,
∴,
即,
解得:AC=7.5m.
所以小方行走的路程为7.5m.
故选择:D.
【点睛】
本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.
4、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
5、D
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】
解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,
故选D.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
6、A
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
【详解】
解:从左面看易得有两列,从左到右小正方形的个数分别为3,1.
故选:A.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
7、C
【分析】
根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.
【详解】
解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;
B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;
C.从三个方向看形状一样,都是圆形,故本选项符合题意;
D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.
故选:C.
【点睛】
本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.
8、D
【分析】
根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.
【详解】
解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;
B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;
C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;
D、圆的主视图和俯视图都为圆,故D选项符合题意;
故选D.
【点睛】
本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.
9、B
【分析】
几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解
【详解】
解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,
所以这个几何体从正面看到的平面图形为
故选:B
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
10、B
【分析】
根据左视图是从物体左面看,所得到的图形进行解答即可.
【详解】
解:图中几何体的左视图是:
故选:B.
【点睛】
本题主要考查了简单组合体的三视图,解题的关键是掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
二、填空题
1、.
【分析】
根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.
【详解】
由三视图可知,几何体是由圆柱体和圆锥体构成,
圆柱和圆锥的底面直径均为2,高分别为4和1,
∴圆锥和圆柱的底面积为π,
故该几何体的体积为:4π+π=π,
故答案为:π.
【点睛】
本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.
2、5
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.
【详解】
解:由俯视图易得最底层小正方体的个数为3,由主视图可知第二层的右侧有2个正方体,从左视图可知只有一行二层,那么共有3+2=5个正方体.
故答案为:5.
【点睛】
本题考查了由三视图确定几何体的形状,同时考查学生空间想象能力及对立体图形的认识.
3、8
【分析】
由题意得,只需保留原几何的最外层和底层,最中间有8块,即可得.
【详解】
解: ∵新几何体与原几何体的三视图相同,
∴只需保留原几何的最外层和底层,
∴最中间有(块),
故答案为:8.
【点睛】
本题考查了正方体的三视图,解题的关键是掌握正方体的三视图.
4、25cm
【分析】
要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
【详解】
解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:
∵长方体的宽为10,高为20,点B与点C的距离是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根据勾股定理得:AB==25;
只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=20+5=25,AD=10,
在直角三角形ABD中,根据勾股定理得:AB=;
只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴AC=CD+AD=20+10=30,
在直角三角形ABC中,根据勾股定理得:AB=;
∵
∴蚂蚁爬行的最短距离是25cm,
故答案为:25cm.
【点睛】
此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键.
5、10 14
【分析】
从上面看中可以看出最底层小正方体的个数及形状,从前面看可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】
解:∵从上面看有7个正方形,
∴最底层有7个正方体,
从前面看可得第2层最少有2个正方体;最多有5个正方体,
第3层最少有1个正方体;最多有2个正方体,
∴该组合几何体最少有7+2+1=10个正方体,最多有7+5+2=14个正方体.
故答案为:10,14.
【点睛】
此题主要考查了不同方向看几何体,关键是掌握口诀“上面看打地基,前面看疯狂盖,左面看拆违章”就很容易得到答案.
三、解答题
1、(1)6;(2)见解析;(3)5,7
【分析】
(1)根据图形知图形的层数及各层的块数,相加即得;
(2)根据三视图的画法解答;
(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个.
【详解】
解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,
∴图中共有1+2+3=6块小正方体,
故答案为:6;
(2)如图:
(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,
故答案为:5,7.
【点睛】
此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键.
2、(1)10;(2)见解析
【分析】
(1)数出小立方体的个数即可;
(2)根据三视图的画法画出主视图、左视图、俯视图.
【详解】
解:(1)根据几何体,在俯视图中标出:
个,
故答案为:10;
(2)三视图如图所示:
【点睛】
考查简单几何体的三视图的画法,解题的关键是掌握主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.
3、见解析
【分析】
根据三视图的画法,直接画出主视图、左视图和俯视图即可.
【详解】
解:如图所示:
【点睛】
本题考查三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
4、(1)三层;(2)9
【分析】
(1)由主视图与左视图可以得到该堆砌图形有3层;
(2)结合三种视图分析每个位置的小正方体的个数,再写在俯视图中,从而可得答案.
【详解】
解:(1)由主视图与左视图可得:这个物体一共有三层.
(2)结合三种视图可得:各个位置的小正方体的个数如图示:
所以这个图形一共由9个小正方体组成.
【点睛】
本题考查的是根据三视图还原几何体,掌握“由小正方体堆砌图形的三视图还原堆砌图形”是解本题的关键.
5、(1)见解析;(2)见解析
【分析】
(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;
(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线
【详解】
(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,
(2)如图所示,
【点睛】
本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.
初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列事件是必然事件的是,下列事件中,是必然事件的是,把6张大小,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
沪科版九年级下册第24章 圆综合与测试随堂练习题: 这是一份沪科版九年级下册第24章 圆综合与测试随堂练习题,共29页。试卷主要包含了下列判断正确的个数有,如图,是的直径,等内容,欢迎下载使用。
沪科版九年级下册第24章 圆综合与测试课后测评: 这是一份沪科版九年级下册第24章 圆综合与测试课后测评,共32页。