【难点解析】2022年北京市平谷区中考数学模拟真题练习 卷(Ⅱ)(含答案及详解)
展开2022年北京市平谷区中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若菱形的周长为8,高为2,则菱形的面积为( )
A.2 B.4 C.8 D.16
2、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
3、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
4、如图,五边形中,,CP,DP分别平分,,则( )
A.60° B.72° C.70° D.78°
5、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )
A.7 B.12 C.14 D.18
6、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )
A. B.
C. D.
7、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )
A.10π B.12π C.16π D.20π
8、如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )
A.AB = CD B.∠B = ∠D C.AD = CB D.∠BAC = ∠DCA
9、下列图形中,是中心对称图形的是( )
A. B.
C. D.
10、对于二次函数y=﹣x2+2x+3,下列说法不正确的是( )
A.开口向下
B.当x≥1时,y随x的增大而减小
C.当x=1时,y有最大值3
D.函数图象与x轴交于点(﹣1,0)和(3,0)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知,,那么_______.(用度、分、秒表示的大小)
2、计算:=______.
3、已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+3=0有两个不相等的实数根,则m的取值范围是 ___;
4、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
5、计算:=___;
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:,其中.
2、如图,在中,对角线的垂直平分线分别交,于点,,与相交于点,连接,.
(1)求证:四边形是菱形;
(2)已知,,,请你写出的值.
3、关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1,x2.
(1)求 k 的取值范围;
(2)请问是否存在实数 k,使得 x1+x2=1﹣x1x2 成立?若存在,求出 k 的值;若不存在, 说明理由.
4、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,F为AB延长线上一点,连接CF,DF.
(1)若OE=3,BE=2,求CD的长;
(2)若CF与⊙O相切,求证DF与⊙O相切.
5、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.
-参考答案-
一、单选题
1、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
2、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
3、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
4、C
【分析】
根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.
【详解】
解:五边形的内角和等于,,
,
、的平分线在五边形内相交于点,
,
.
故选:C.
【点睛】
本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.
5、C
【分析】
第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.
【详解】
解:,
2a-8=x-3,
x=2a-5,
∵方程的解为非负数,x-3≠0,
∴,
解得a≥且a≠4,
,
解不等式组得:,
∵不等式组无解,
∴5-2a≥-7,
解得a≤6,
∴a的取值范围:≤a≤6且a≠4,
∴满足条件的整数a的值为3、5、6,
∴3+5+6=14,
故选:C.
【点睛】
本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.
6、B
【分析】
直接根据题意得出函数关系式,进而得出函数图象.
【详解】
解:由题意可得:t=,是反比例函数,
故只有选项B符合题意.
故选:B.
【点睛】
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
7、D
【分析】
首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.
【详解】
解:圆锥的底面半径是:,则底面周长是:,
则圆锥的侧面积是:.
故选:D.
【点睛】
本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.
8、C
【分析】
由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,可添加AD=CB即可.
【详解】
∵AD∥BC,
∴.
∵AC为公共边,
∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.
故选:C.
【点睛】
本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.
9、B
【分析】
根据中心对称图形的定义求解即可.
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
【点睛】
此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
10、C
【分析】
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】
解:y=-x2++2x+3=-(x-1)2+4,
∵a=-1<0,
∴该函数的图象开口向下,
故选项A正确;
∵对称轴是直线x=1,
∴当x≥1时,y随x的增大而减小,
故选项B正确;
∵顶点坐标为(1,4),
∴当x=1时,y有最大值4,
故选项C不正确;
当y=0时,-x2+2x+3=0,
解得:x1=-1,x2=3,
∴函数图象与x轴的交点为(-1,0)和(3,0),
故D正确.
故选:C.
【点睛】
本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
二、填空题
1、
【分析】
根据计算即可.
【详解】
解:,,
,
故答案为:.
【点睛】
本题考查了角的和差,以及度分秒的换算,正确掌握1°=,是解答本题的关键.
2、2
【分析】
根据二次根式乘除法运算法则进行计算即可得到答案.
【详解】
解:原式,
故答案为:.
【点睛】
此题主要考查了二次根式的乘除运算,掌握运算法则是解答此题的关键.
3、m<且m≠1
【分析】
根据一元二次方程的定义和判别式的意义得到不等式组:,然后解不等式组即可求出m的取值范围.
【详解】
解:∵关于x的一元二次方程(m-1)x2-2mx+m+3=0有两个不相等的实数根,
∴,
解得m<且m≠1.
故答案为:m<且m≠1.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.
4、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
5、
【分析】
根据二次根式的乘法法则:(a≥0,b≥0)计算.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.
三、解答题
1、,-1.
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.
【详解】
解:原式=,
当时,原式=.
【点睛】
本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
2、(1)见解析;(2)
【分析】
(1)方法一:先证明≌,可得,再证明四边形是平行四边形,结合,从而可得结论;方法二:先证明≌,可得,再证明四边形是平行四边形,结合,从而可得结论;方法三:证明从而可得结论;
(2)如图,过作于 利用菱形的性质结合三角函数先求解菱形的对角线的长及菱形的面积,再利用 求解 从而可得答案.
【详解】
(1)方法一:∵四边形是平行四边形,
∴
∴
又∵垂直平分,
∴..
∴≌.
∴.
∴四边形是平行四边形.
∵
∴四边形是菱形.
方法二:∵四边形是平行四边形,
∴.
∴
又∵垂直平分,
∴..
∴≌.
∴.
∴四边形是平行四边形.
∵,
∴四边形是菱形.
方法三:∵垂直平分,
∴,
∵四边形是平行四边形,
∴.
∴
∴≌.
∴.
∴
∴四边形是菱形.
(2)如图,过作于
四边形是菱形.
则
【点睛】
本题考查的是平行四边形的性质,菱形的判定,菱形的性质,锐角三角函数的应用,掌握“选择合适的判定方法判断菱形及利用等面积法求解菱形的高”是解本题的关键.
3、
(1)
(2)存在,
【分析】
(1)根据关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根,≥0,代入计算求出k的取值范围.
(2)根据根与系数的关系,,,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断.
(1)
解:∵关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根
根据题意得,
解得.
(2)
解:存在.
根据根与系数关系,,
∵x1+x2=1﹣x1x2,
∴,
解得,
∵.
∴存在实数k=-3,使得x1+x2=1﹣x1x2.
【点睛】
本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k的取值范围来进取舍.
4、(1)8;(2)见解析
【分析】
(1)连接OC,利用勾股定理求解CE=4,再利用垂径定理可得答案;
(2)证明 再证明 可得 从而可得结论.
【详解】
(1)解:连接OC,
∵CD⊥AB,
∴CE=DE,
∴OC=OB=OE+BE=3+2=5,
在Rt△OCE中,∠OEC=90°,由勾股定理得:CE2=OC2-OE2,
∴CE2=52-32,
∴CE=4,
∴CD=2CE=8.
(2)解:连接OD,
∵CF与⊙O相切,
∴∠OCF=90°,
∵CE=DE,CD⊥AB,
∴CF=DF,
又OF=OF,OC=OD,
∴△OCF≌△ODF,
∴∠ODF=∠OCF=90°,即OD⊥DF.
又D在⊙O上,
∴DF与⊙O相切.
【点睛】
本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明△OCF≌△ODF得到∠ODF=∠OCF=90°是解本题的关键.
5、AE=8,BE=10.
【分析】
由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.
【详解】
解:∵△ADE∽△ABC,
∴,
∵DE=8,BC=24,CD=18,AD=6,
∴AC=AD+CD=24,
∴AE=8,AB=18,
∴BE=AB-AE=10.
【点睛】
本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.
【真题汇总卷】2022年北京市平谷区中考数学模拟定向训练 B卷(含答案详解): 这是一份【真题汇总卷】2022年北京市平谷区中考数学模拟定向训练 B卷(含答案详解),共24页。试卷主要包含了抛物线的顶点坐标是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市平谷区中考数学模拟真题 (B)卷(含答案解析): 这是一份【真题汇总卷】2022年北京市平谷区中考数学模拟真题 (B)卷(含答案解析),共22页。试卷主要包含了在平面直角坐标系xOy中,点A,下列图形中,是中心对称图形的是,下列命题中,是真命题的是等内容,欢迎下载使用。
【真题汇编】2022年北京市平谷区中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇编】2022年北京市平谷区中考数学模拟真题测评 A卷(含答案详解),共22页。试卷主要包含了下列命题中,是真命题的是,点P,下列说法中,不正确的是等内容,欢迎下载使用。