【难点解析】2022年北京市大兴区中考数学模拟真题测评 A卷(含答案及详解)
展开2022年北京市大兴区中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
2、若菱形的周长为8,高为2,则菱形的面积为( )
A.2 B.4 C.8 D.16
3、下列命题中,真命题是( )
A.同位角相等
B.有两条边对应相等的等腰三角形全等
C.互余的两个角都是锐角
D.相等的角是对顶角.
4、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
5、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
6、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
7、二次函数y=(x+2)2+5的对称轴是( )
A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣2
8、如图,在中,,,则的值为( )
A. B. C. D.
9、的相反数是( )
A. B. C. D.3
10、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
A.1 B.2 C.4 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点A的坐标是,点B是正比例函数的图像上一点,若只存在唯一的点B,使为等腰三角形,则k的取值范围是______.
2、如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _____.
3、实数a、b在数轴上对应点的位置如图所示,化简的值是_________.
4、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
5、如图,,若,平分,则的度数是_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,E,F是线段BC上两点,ABCD,BE=CF,∠A=∠D.求证:AF=DE.
2、如图,,点C、D分别在射线OA、OB上,且满足.将线段DC绕点D顺时针旋转60°,得到线段DE.过点E作OC的平行线,交OB反向延长线于点F.
(1)根据题意完成作图;
(2)猜想DF的长并证明;
(3)若点M在射线OC上,且满足,直接写出线段ME的最小值.
3、如图,射线、、、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合.
(1)图中与互余的角是_______;
(2)①用直尺和圆规作的平分线;(不写作法,保留作图痕迹)
②在①所做的图形中,如果,那么点在点的_______方向.
4、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.
5、一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地.
(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?
(2)如果要在3h返回甲地,求该司机返程的平均速度;
(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地.求该司机返程所用的总时间.
-参考答案-
一、单选题
1、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
2、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
3、C
【分析】
根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.
【详解】
解:A、两直线平行,同位角相等,故本选项说法是假命题;
B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;
C、互余的两个角都是锐角,本选项说法是真命题;
D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、D
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
5、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
6、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
7、D
【分析】
直接根据二次函数的顶点式进行解答即可.
【详解】
解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.
故选:D.
【点睛】
本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.
8、C
【分析】
由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.
【详解】
解:在直角三角形ABC中,∠C=90°
∵sinA=,
∴可设a=5k,c=13k,由勾股定理可求得b=12k,
∴cosA=,
故选:C.
【点睛】
本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.
9、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
10、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
二、填空题
1、
【分析】
作OA的垂直平分线,交OA于点C,y轴于点D.根据题意结合垂直平分线的性质可判断出当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x>0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形.再根据点A的坐标,即可求出直线CD的斜率,即可得出k的取值范围.
【详解】
如图,作OA的垂直平分线,交OA于点C,y轴于点D.
由垂直平分线的性质可知,当点B在OA的垂直平分线上时,即满足为等腰三角形,但此时在该正比例函数上还有一点B可使为等腰三角形,如图,和都为等腰三角形,此时不符合只存在唯一的点B,使为等腰三角形,
故要想只存在唯一的点B,使为等腰三角形,并在x>0的条件下,只能B点不在OA的垂直平分线上,即该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间.
设OA的函数解析式为:,则
解得:.
设CD的函数解析式为:,
∵CD在OA的垂直平分线上,
∴,即,
解得:.
∵该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间,
∴,即.
故答案为:.
【点睛】
本题考查垂直平分线的性质,等腰三角形的定义,一次函数和正比例函数的图像和性质,根据题意理解当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x>0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形是解答本题的关键.
2、
【分析】
过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明△ABF∽△DCA,进而对应边成比例即可求出FB的长.
【详解】
解:如图,过点A作AH⊥BC于点H,
∵∠BAC=90°,AB=AC=1,
∴BC=,
∵AH⊥BC,
∴BH=CH=,
∴AH=,
∵AD=DE=,
∴DH=,
∴CD=DH-CH=,
∵∠ABC=∠ACB=45°,
∴∠ABF=∠ACD=135°,
∵∠DAE=45°,
∴∠DAF=135°,
∵∠BAC=90°,
∴∠BAF+∠DAC=45°,
∵∠BAF+∠F=45°,
∴∠F=∠DAC,
∴△ABF∽△DCA,
∴,
∴,
∴BF=,
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF∽△DAC.
3、b
【分析】
根据数轴,b>0,a<0,则a-b<0,化简绝对值即可.
【详解】
∵b>0,a<0,
∴a-b<0,
∴
=b-a+a
=b,
故答案为:b.
【点睛】
本题考查了绝对值的化简,正确确定字母的属性是化简的关键.
4、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
5、
【分析】
先求解 利用角平分线再求解 由可得答案.
【详解】
解: ,,
平分,
故答案为:
【点睛】
本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.
三、解答题
1、见解析
【分析】
欲证明AF=DE,只要证明△ABF≌△DCE即可;
【详解】
证明:∵BE=CF,
∴BF=CE,
∵ABCD,
∴∠B=∠C,
在△ABF和△DCE,,
∴△ABF≌△DCE,
∴AF=DE.
【点睛】
本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
2、(1)见解析;(2),证明见解析;(3)
【分析】
(1)根据题意作出图形即可;
(2)在OB上截取,连接CP、CE、OE,得出、是等边三角形,根据SAS证明,由全等三角形的性质和平行线的性质得是等边三角形,可得即可;
(3)过点M作,连接,作等边,即当点E到点时,ME得最小值,由得,故可求出、,即可得出ME的最小值.
【详解】
(1)根据题意作图如下所示:
(2),证明如下:
如图,在OB上截取,连接CP、CE、OE.
∵,,
∴是等边三角形,
∴,,
∵,,
∴是等边三角形,
∴,,
∵,
∴,
在和中,
,
∴,
∴,,
∴,
∵,
∴,
∴是等边三角形,
∴,
∴,
∴,
∵,
∴,
(3)
如图,过点M作,连接,作等边,即当点E到点时,ME得最小值,
∵,
∴,
∴,,
故ME的最小值为.
【点睛】
本题考查全等三角形的判定与性质,等边三角形的判定与性质,掌握相关知识点的应用是解题的关键.
3、
(1)、
(2)①作图见解析;②北偏东或东偏北
【分析】
(1)由题可知,故可知与互余的角;
(2)①如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;②,,进而得出P与O有关的位置.
(1)
解:图中与互余的角是和;
故答案为:、.
(2)
①如图,为所作;
②,
,
平分,
,
,
即点在点的北偏东方向或东偏北
故答案为:北偏东或东偏北.
【点睛】
本题考查了余角,角平分线以及坐标系中的位置.解题的关键在于正确的求解角度.
4、,
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当,时,原式.
【点睛】
本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.
5、
(1)
(2)
(3)3.5小时
【分析】
(1)根据题意求得总路程为,根据时间等于路程除以速度列出函数关系式即可;
(2)根据速度等于路程除以时间即可求解;
(3)根据函数图像可知前1.5小时行驶70km,剩余路程除以速度即可求得时间,进而求得总时间
(1)
解:∵一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,
∴甲地到乙地的路程为
(2)
(3)
总时间为:
【点睛】
本题考查了反比例函数的应用,一次函数的应用,从函数图象获取信息是解题的关键.
【真题汇编】2022年北京市大兴区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇编】2022年北京市大兴区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共29页。试卷主要包含了二次函数y=,已知圆O的半径为3,AB等内容,欢迎下载使用。
【真题汇编】2022年北京市大兴区中考数学模拟真题测评 A卷(含答案及详解): 这是一份【真题汇编】2022年北京市大兴区中考数学模拟真题测评 A卷(含答案及详解),共19页。试卷主要包含了已知,,且,则的值为,抛物线的顶点坐标是,若,则的值是,下列运动中,属于旋转运动的是等内容,欢迎下载使用。
【真题汇编】2022年北京市大兴区中考数学真题模拟测评 (A)卷(含答案及详解): 这是一份【真题汇编】2022年北京市大兴区中考数学真题模拟测评 (A)卷(含答案及详解),共26页。试卷主要包含了下列式中,与是同类二次根式的是,已知点A等内容,欢迎下载使用。