![精品解析京改版七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12675634/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12675634/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12675634/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂检测题
展开这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂检测题,共20页。试卷主要包含了已知x=1是不等式,下列不等式一定成立的是,如果,那么下列不等式中正确的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则一定有,“□”中应填的符号是( )
A. B. C. D.
2、设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m;②若m>1,<m;③若<m,则m>0;④若>m,则0<m<1,其中是真命题的是( )
A.①② B.①③ C.②③ D.②④
3、已知a>b,则下列选项不正确是( )
A.a+c>b+c B.a﹣b>0 C. D.a•c2≥b•c2
4、能说明“若xy,则axay”是假命题的a的值是( )
A.3 B.2 C.1 D.
5、若m>n,则下列选项中不成立的是( )
A.m+4>n+4 B.m﹣4>n﹣4 C. D.﹣4m>﹣4n
6、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )
A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤1
7、若a+b+c=0,且|a|>|b|>|c|,则下列结论一定正确的是( )
A.abc>0 B.abc<0 C.ac>ab D.ac<ab
8、下列不等式一定成立的是( )
A. B. C. D.
9、如果,那么下列不等式中正确的是( )
A. B.
C. D.
10、不等式2x﹣1<3的解集在数轴上表示为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在不等式中,a,b是常数,且.当______时,不等式的解集是;当_______时,不等式的解集是.
2、初三的几位同学拍了一张合影作为留念,已知拍一张底片需要 5 元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数至少为__________.
3、如果不等式(b+1)x<b+1的解集是x>1,那么b的范围是 ___.
4、若关于x的不等式组的整数解共有5个,则a的取值范围_________.
5、假设a>b,请用“>”或“<”填空
(1)a-1________b-1;
(2)2a______2b;
(3)_______;
(4)a+1________b+1.
三、解答题(5小题,每小题10分,共计50分)
1、全民健身和医疗保健是社会普遍关注的问题,某社区共投入60万元用于购买健身器材和药品.
(1)若2019年社区购买健身器材的费用不超过总投入的,问2019年最低投入多少万元购买药品?
(2)2020年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2019年相同.
①求2019年社区购买药品的总费用;
②据统计,2019年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2019年相比,如果2020年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2020年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2020年该社区健身家庭的户数.
2、解下列不等式
(1)2x>3﹣x;
(2)2(x+4)>3(x﹣1).
3、解不等式(组):
(1)1+3(x﹣2)≥x﹣3;
(2).
4、解不等式组:.
5、阅读下面信息:
①数轴上两点M、N表示数分别为,那么点M与点N之间的距离记为,且.
②当数轴上三点A、B、C满足时,则称点C是“A对B的k相关点”.例如,当点A、B、C表示的数分别为0,1,2时,,所以C是“A对B的2相关点”.
根据以上信息,回答下列问题:
已知点A、B在数轴上表示的数分别为5和-4,动点P在数轴上表示的数为x:
(1)若点P是“A对B的2相关点”,则x= ;
(2)若x满足,且点P是“A对B的k相关点”,则k的最大值是 ;最小值是 ;
(3)若动点P从A点出发以每秒2个单位的速度向左运动,同时动点Q从B点出发以每秒1个单位的速度向右运动,运动t秒时,点Q恰好是“P对A的2相关点”,求t的值.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据不等式的性质:不等式两边同时乘以同一个负数,不等号的方向改变,即可选出答案.
【详解】
解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.
∵a>b,
∴-4a<-4b.
故选:B.
【点睛】
本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.
2、A
【解析】
【分析】
根据不等式的性质,逐项判断,即可.
【详解】
解:①若﹣1<m<0,则<m,是真命题;
②若m>1,<m,是真命题;
③若<m,当 时, ,而 ,则原命题是假命题;
④若>m,当 时, ,而 ,则原命题是假命题;
则真命题有①②.
故选:A
【点睛】
本题主要考查了命题的真假,熟练掌握一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可是解题的关键.
3、C
【解析】
【分析】
由题意直接根据不等式的性质对各个选项进行分析判断即可.
【详解】
解:A.∵a>b,
∴a+c>b+c,故本选项不符合题意;
B.∵a>b,
∴a﹣b>b﹣b,
∴a﹣b>0,故本选项不符合题意;
C.∵a>b,
∴,故本选项符合题意;
D.∵a>b,c2≥0,
∴a•c2≥b•c2,故本选项不符合题意;
故选:C.
【点睛】
本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向.
4、D
【解析】
【分析】
根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.
【详解】
解:“若xy,则axay”是假命题,
则,
故选:D.
【点睛】
本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.
5、D
【解析】
【分析】
根据不等式的基本性质进行解答即可.
【详解】
解:∵m>n,
A、m+4>n+4,成立,不符合题意;
B、m﹣4>n﹣4,成立,不符合题意;
C、,成立,不符合题意;
D、﹣4m﹣4n,原式不成立,符合题意;
故选:D.
【点睛】
本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.
6、A
【解析】
【分析】
根据不等式解的定义列出不等式,求出解集即可确定出a的范围.
【详解】
解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,
∴ 且 ,
即﹣4(﹣2a+2)≤0且﹣(a+2)>0,
解得:a<﹣2.
故选:A.
【点睛】
此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.
7、C
【解析】
【分析】
由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.
【详解】
解: a+b+c=0,且|a|>|b|>|c|,
当时,则 则 不符合题意;
从而:中至少有一个负数,至多两个负数,
当 且|a|>|b|>|c|,
此时B,C成立,A,D不成立,
当 且|a|>|b|>|c|,
此时A,C成立,B,D不成立,
综上:结论一定正确的是C,
故选C
【点睛】
本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.
8、B
【解析】
【分析】
根据不等式的性质依次判断即可.
【详解】
解:A.当y≤0时不成立,故该选项不符合题意;
B.成立,该选项符合题意;
C. 当x≤0时不成立,故该选项不符合题意;
D. 当m≤0时不成立,故该选项不符合题意;
故选:B.
【点睛】
本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.
9、A
【解析】
【分析】
根据不等式的性质解答.
【详解】
解:根据不等式的性质3两边同时除以2可得到,故A选项符合题意;
根据不等式的性质1两边同时减去1可得到,故B选项不符合题意;
根据不等式的性质2两边同时乘以-1可得到,故C选项不符合题意;
根据不等式的性质1和2:两边同时乘以-1,再加上2可得到,故D选项不符合题意;
故选:A.
【点睛】
此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变.
10、D
【解析】
【分析】
先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.
【详解】
解:由2x﹣1<3得:x<2,
则不等式2x﹣1<3的解集在数轴上表示为
,
故选:D.
【点睛】
本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.
二、填空题
1、
【解析】
【分析】
移项后,根据不等式的解集及不等式的性质即可判断a的符号.
【详解】
移项得:
则当时,不等式的解集为;当时,不等式的解集为;
故答案为:,
【点睛】
本题考查了不等式的基本性质,要注意的是,应用不等式的基本性质3时,不等号要改变方向.
2、6人
【解析】
【分析】
根据题意得出不等关系,即平均每人分摊的钱不足1.5元,由此列一元一次不等式求解即可.
【详解】
解:设参加合影的同学人数为x人,
由题意得:5+0.5x<1.5x,
解得:x>5,
∵x取正整数,
∴参加合影的同学人数至少为6人.
故答案为:6人.
【点睛】
本题考查了一元一次不等式的应用,弄清题意,准确找出不等关系是解题的关键.
3、b<-1
【解析】
【分析】
根据不等式的基本性质3可知b+1<0,解之可得答案.
【详解】
解:∵(b+1)x<b+1的解集是x>1,
∴b+1<0,
解得b<-1,
故答案为:b<-1.
【点睛】
本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3:不等式两边同时乘以或除以同一个负数,不等号的方向改变.
4、﹣1<a≤0
【解析】
【分析】
先求出不等式组的解集,再根据已知条件得出−1<a≤0即可.
【详解】
解:,
解不等式①,得x<5,
解不等式②,得x≥a,
所以不等式组的解集是a≤x<5,
∵关于x的不等式组的整数解共有5个,
∴−1<a≤0,
故答案为:−1<a≤0.
【点睛】
本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
5、 > > < >
【解析】
【分析】
(1)根据不等式的性质:两边同时减去一个数,不等号方向不变号,即可得;
(2)根据不等式的性质:两边同时乘以一个正数,不等号方向不变号,即可得;
(3)根据不等式的性质:两边同时乘以一个负数,不等号方向变号,即可得;
(4)根据不等式的性质:两边同时加上一个数,不等号方向不变号,即可得.
【详解】
解:(1)∵,
∴;
(2)∵,
∴;
(3)∵,
∴;
(4)∵,
∴;
故答案为:①;②;③;④.
【点睛】
题目主要考查不等式的基本性质,熟练掌握不等式的基本性质是解题关键.
三、解答题
1、(1)2019年最低投入20万元购买商品;(2)①2019年购买药品的总费用为32万元;②2020年该社区健身家庭的户数为300户
【解析】
【分析】
(1)设2019年购买药品的费用为x万元,根据2019年社区购买健身器材的费用不超过总投入的,列出不等式,求出不等式的解集即可得到结果;
(2)①设2019年社区购买药品的费用为y万元,则购买健身器材的费用为(60﹣y)万元,2020年购买健身器材的费用为(1+50%)(60﹣y)万元,购买药品的费用为(1﹣)y万元,根据题意列出方程,求出方程的解得到的值,即可得到结果;
②设这个相同的百分数为m,则2020年健身家庭数为200(1+m)户,根据2020年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,列式求解即可.
【详解】
解:(1)设2019年购买药品的费用为x万元,
根据题意得:60﹣x≤×60,
解得:x≥20,
则2019年最低投入20万元购买商品;
(2)①设2019年社区购买药品的费用为y万元,则购买健身器材的费用为(60﹣y)万元,
2020年购买健身器材的费用为(1+50%)(60﹣y)万元,购买药品的费用为(1﹣)y万元,
根据题意得:(1+50%)(60﹣y)+(1﹣)y=60,
解得:y=32,30﹣y=28,
则2019年购买药品的总费用为32万元;
②设这个相同的百分数为m,则2020年健身家庭数为200(1+m)户,
2020年平均每户健身家庭的药品费用为(1﹣m)万元,
依题意得:200(1+m)•(1﹣m)=(1+50%)×28×,
解得:m=±,
∵m>0,∴m==50%,
∴200(1+m)=300(户),
则2020年该社区健身家庭的户数为300户.
【点睛】
本题考查了一元一次不等式的应用,一元一次方程的应用,根据题意沥青题目所涉及的数量间的关系,并找到蕴含的相等关系列出方程是解题的关键.
2、(1)x>1;(2)x<11
【解析】
【分析】
(1)根据解一元一次不等式基本步骤:、移项、合并同类项、系数化为1可得;
(2)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
【详解】
解:(1)移项,得:2x+x>3,
合并同类项,得:3x>3,
系数化为1,得:x>1;
(2)去括号,得:2x+8>3x﹣3,
移项,得:2x﹣3x>﹣3﹣8,
合并同类项,得:﹣x>﹣11,
系数化为1,得:x<11.
【点睛】
本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键.
3、(1)x≥1;(2)﹣2≤x<1.
【解析】
【分析】
(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【详解】
解:(1)去括号,得1+3x﹣6≥x﹣3,
移项,得3x﹣x≥6﹣1﹣3,
合并同类项,得2x≥2,
两边都除以2,得x≥1;
(2),
解不等式①,得x≥﹣2,
解不等式②,得x<1,
所以该不等式组的解为﹣2≤x<1.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
4、
【解析】
【分析】
分别求出两个不等式的解集,然后取公共解集即可得出结论.
【详解】
解不等式①得:
解不等式②得:
不等式组的解集为:
【点睛】
此题考查的是解不等式组,掌握不等式的解法和公共解集的取法是解题关键.
5、(1)或;(2)8,;(3).
【解析】
【分析】
(1)根据“相关点”的定义建立方程,解方程即可得;
(2)先求出的取值范围,再根据“相关点”的定义,将用含的式子表示出来,由此可得一个不等式组,解不等式组即可得;
(3)先根据数轴的定义分别求出点所表示的数,从而可得的值,再根据“相关点”的定义建立方程,解方程即可得.
【详解】
解:(1)由题意得:,
点是“对的2相关点”,
,即,
化简得:或,
解得或,
故答案为:或;
(2),且,
,
,
点是“对的相关点”,
,即,
解得,
,即,
,
又,
,
解得,
则的最大值是8,最小值是,
故答案为:8,;
(3)运动秒后,点表示的数为,点表示的数为,
则,
点恰好是“对的2相关点,
,即,
化简得:或,
解得(舍去)或,
故的值为.
【点睛】
本题考查了数轴、一元一次方程的应用、一元一次不等式组的应用,正确理解“相关点”的定义是解题关键.
相关试卷
这是一份数学北京课改版第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了若,,求的值是,下列计算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了已知下列一组数,若,,,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共17页。