![【高频真题解析】中考数学第三次模拟试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12675270/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】中考数学第三次模拟试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12675270/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】中考数学第三次模拟试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12675270/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【高频真题解析】中考数学第三次模拟试题(含详解)
展开
这是一份【高频真题解析】中考数学第三次模拟试题(含详解),共24页。试卷主要包含了多项式去括号,得,二次函数y=等内容,欢迎下载使用。
中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )A.9 B.10 C.12 D.142、对于二次函数y=﹣x2+2x+3,下列说法不正确的是( )A.开口向下B.当x≥1时,y随x的增大而减小C.当x=1时,y有最大值3D.函数图象与x轴交于点(﹣1,0)和(3,0)3、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.44、多项式去括号,得( )A. B. C. D.5、已知关于x,y的方程组和的解相同,则的值为( )A.1 B.﹣1 C.0 D.20216、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )A.个 B.个 C.个 D.个7、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )A.10米 B.12米 C.15米 D.20米8、二次函数y=(x+2)2+5的对称轴是( )A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣29、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>12510、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程(2x﹣1)2=25的解是 ___;2、如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=_____.3、若∠α=55°25’,则∠α的补角为_______.4、若等腰三角形的一个外角等于80°,则与它不相邻的两个内角的度数分别是 ___;5、若与互为相反数,则代数式的值是_________.三、解答题(5小题,每小题10分,共计50分)1、如图所示,,,,D在CE上,直线AE与线段BD交于点G(不与B、D重合)(1)当时①如图1,求的度数;②如图2,若的角平分线交AD于F,求证:CF平分;(2)如图3,过点A作BC的垂线,变BC,ED于点M、N,求EN和ED的数量关系.2、如图△ABC中,∠B=60°,∠BAC与∠ACB的角平分线AD、CE交于O.求证:AC=AE+DC.3、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?4、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.5、如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度. -参考答案-一、单选题1、C【分析】过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.【详解】解:过点F作MN⊥AD于点M,交BC于点N,连接BD,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC∴△AFE∽△CFB∴ ∵DE=2AE∴AD=3AE=BC∴ ∴,即 又 ∴∴ 故选:C【点睛】本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.2、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:y=-x2++2x+3=-(x-1)2+4,∵a=-1<0,∴该函数的图象开口向下,故选项A正确;∵对称轴是直线x=1,∴当x≥1时,y随x的增大而减小,故选项B正确;∵顶点坐标为(1,4),∴当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,∴函数图象与x轴的交点为(-1,0)和(3,0),故D正确.故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.4、D【分析】利用去括号法则变形即可得到结果.【详解】解:−2(x−2)=-2x+4,故选:D.【点睛】本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.5、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.【详解】解:联立得:,解得:,则有,解得:,∴,故选:B.【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.6、A【分析】过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.【详解】解:过点A作AD⊥BC与D,∵BD=4,,∴AD=BD,∵,∴,∴BC=7,∴DC=BC-BD=7-4=3,∴①主视图中正确;∴左视图矩形的面积为3×6=,∴②正确;∴tanC,∴③正确;其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.7、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.【详解】解:如图,(1)AB==;(2)AB==15,由于15<,则蚂蚁爬行的最短路程为15米.故选:C.【点睛】本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.8、D【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.故选:D.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.9、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x)>125,故选:D.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.10、B【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.二、填空题1、x1=3,x2=-2【分析】通过直接开平方求得2x-1=±5,然后通过移项、合并同类项,化未知数系数为1解方程.【详解】解:由原方程开平方,得2x-1=±5,则x=,解得,x1=3,x2=-2.故答案是:x1=3,x2=-2.【点睛】本题考查了解一元二次方程--直接开平方法.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2、4或【分析】以B,D,E为顶点的三角形与△ABC相似,则存在两种情况,即△BDE∽△BCA,也可能是△BDE∽△BAC,应分类讨论,求解.【详解】解:如图,DE//BC①当∠AED=∠C时,即DE∥AC则△BDE∽△BCA,∴ ∵BD=BC,∴∴ ②当∠BED=∠C时,△BED∽△BCA∴,即 ∴ 综上,BE=4或故答案为4或【点睛】此题考查了相似三角形的性质,会利用相似三角形求解一些简单的计算问题.3、【分析】根据补角的定义计算.【详解】解:∠α的补角为,故答案为:.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.4、40°,40°度,40度【分析】先根据平角等于180°求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等求解.【详解】解:∵等腰三角形的一个外角等于80°,∴与这个外角相邻的内角是180°-80°=100°,∴100°的内角是顶角,(180°-100°)=40°,∴另两个内角是40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.5、2【分析】利用互为相反数的两个数的和为0,计算a的值,代入求值即可.【详解】∵与互为相反数,∴3a-7+2a+2=0,解得a=1,∴=1-2+3=2,∴代数式的值是2,故答案为:2.【点睛】本题考查了相反数的性质,代数式的值,利用互为相反数的两个数的和为零确定字母的值是解题的关键.三、解答题1、(1)①;②证明见详解;(2),证明见详解.【分析】(1)①根据等腰直角三角形的性质可得,再由垂直的性质及直角三角形中两锐角互余即可得;②由①可知:,,再根据等腰三角形的性质可得AD为CE的中垂线,由角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得,利用等量代换得,由此即可证明;(2)过点D作交AN的延长线于点F,AN和BC相交于点H,根据各角之间的数量关系可得,由平行线的性质及各角之间的等量代换得出,,根据全等三角形的判定定理和性质可得,,再利用一次全等三角形的判定和性质可得,,由此即可得出结论.(1)解:①∵,,∴,∵,∴,∴;②证明:如图所示:由①可知:,∴,∴,,∵,∴,,∴AD为CE的中垂线,∴,∴,∵EF平分,∴,∴,∴CF平分;(2)解:过点D作交AN的延长线于点F,AN和BC相交于点H,∵,∴,,∴,即,∵,∴,∴,∵,∴,在与中,,∴,∴,∵,∴,∵,∴,在与中,,∴,∴,∴.【点睛】题目主要考查等腰三角形的判定和性质,中垂线的判定和性质,角平分线的定义,全等三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.2、见解析【分析】在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求∠AOC=120°,∠DOC=∠AOE=60°,由“SAS”可证△CDO≌△CFO,可得∠COF=∠COD=60°,由“ASA”可证△AOF≌△AOE,可得AE=AF,即可得结论.【详解】解:证明:如图,在AC上截取CF=CD,∵∠B=60°,∴∠BAC+∠BCA=120°,∵∠BAC、∠BCA的角平分线AD、CE相交于O,∴∠BAD=∠OAC=∠BAC,∠DCE=∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=60°,∴∠AOC=120°,∠DOC=∠AOE=60°,∵CD=CF,∠OCA=∠DCO,CO=CO,∴△CDO≌△CFO(SAS),∴∠COF=∠COD=60°,∴∠AOF=∠EOA=60°,且AO=AO,∠BAD=∠DAC,∴△AOF≌△AOE(ASA),∴AE=AF,∴AC=AF+FC=AE+CD.【点睛】本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键.3、50【分析】设购进x盏节能灯,列一元一次方程解答.【详解】解:设购进x盏节能灯,由题意得25x+160=30(x-3)解得x=50,答:该商店共购进了50盏节能灯.【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.4、AE=8,BE=10.【分析】由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.【详解】解:∵△ADE∽△ABC,∴,∵DE=8,BC=24,CD=18,AD=6,∴AC=AD+CD=24,∴AE=8,AB=18,∴BE=AB-AE=10.【点睛】本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.5、(1)30m(2)1m【分析】(1)设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.【小题1】解:设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,依题意得:(x-4)(x-5)=650,整理得:x2-9x-630=0,解得:x1=30,x2=-21(不合题意,舍去).答:原正方形空地的边长为30m.【小题2】设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,依题意得:(30-y)(30-1-y)=812,整理得:y2-59y+58=0,解得:y1=1,y2=58(不合题意,舍去).答:小道的宽度为1m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
相关试卷
这是一份【高频真题解析】2022年福建省莆田中考数学模拟真题测评 A卷(含详解),共21页。
这是一份【真题汇编】2022年最新中考数学第三次模拟试题(含详解),共20页。试卷主要包含了方程的解是.等内容,欢迎下载使用。
这是一份【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了下列计算正确的是,-6的倒数是,已知ax2+24x+b=等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)