【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解)
展开中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
2、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
3、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
4、由抛物线平移得到抛物线则下列平移方式可行的是( )
A.向左平移4个单位长度 B.向右平移4个单位长度
C.向下平移4个单位长度 D.向上平移4个单位长度
5、下列计算正确的是( )
A. B.
C. D.
6、-6的倒数是( )
A.-6 B.6 C.±6 D.
7、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )
A.47 B.62 C.79 D.98
8、如图,,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.EF=BC B. C.∠B=∠E D.AB=DE
9、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )
A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4
C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=4
10、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( ).
A.米 B.米 C.米 D.米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
2、近似数0.0320有_____个有效数字.
3、在实数①,②π,③2.131131113,④,⑤0,⑥中,无理数是_____(填序号).
4、经过定点A、B的圆心轨迹是_____.
5、如图,点P是内一点,,,垂足分别为E、F,若,且,则的度数为_________°.
三、解答题(5小题,每小题10分,共计50分)
1、解下列不等式(组),并把解集在数轴上表示出来;
(1);
(2);
(3);
(4).
2、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.
例如,如图已知点,,点关于点的对称平移点为.
(1)已知点,,
①点关于点的对称平移点为________(直接写出答案).
②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)
(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.
3、解方程
(1)
(2)
4、如图①,,AD与BC相交于点M,点H在BD上.求证:.
小明的部分证明如下:
证明:∵,
∴,
∴
同理可得:______,
……
(1)请完成以上的证明(可用其他方法替换小明的方法);
(2)求证:;
(3)如图②,正方形DEFG的顶点D、G分别在的边AB、AC上,E、F在边BC上,,交DG于M,垂足为N,求证:.
5、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:
| 鼻梁条 | 耳带 |
成本 | 90元/箱 | 230元/箱 |
制作配件数目 | 25000只/箱 | 100000只/箱 |
(1)生产110万片口罩需要鼻梁条 箱,耳带 箱;
(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?
(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,
方案一:全部大包销售;
方案二:全部小包销售;
方案三:同时采用两种包装方式且恰好用7天完成任务.
请你通过计算,为口罩厂做出决策.
-参考答案-
一、单选题
1、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
2、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
3、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
4、A
【分析】
抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.
【详解】
解:抛物线向左平移4个单位长度可得: 故A符合题意;
抛物线向右平移4个单位长度可得:故B不符合题意;
抛物线向下平移4个单位长度可得: 故C不符合题意;
抛物线向上平移4个单位长度可得: 故D不符合题意;
故选A
【点睛】
本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.
5、D
【分析】
利用完全平方公式计算即可.
【详解】
解:A、原式=a2+2ab+b2,本选项错误;
B、原式==-a2+2ab-b2,本选项错误;
C、原式=a2−2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项正确,
故选:D.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
6、D
【分析】
根据倒数的定义,即可求解.
【详解】
解:∵-6的倒数是-.
故选:D.
【点睛】
本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.
7、A
【分析】
根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.
【详解】
解:根据题意得:第1个图中黑点的个数是 ,
第2个图中黑点的个数是 ,
第3个图中黑点的个数是,
第4个图中黑点的个数是 ,
……,
由此发现,第 个图中黑点的个数是 ,
∴第6个图中黑点的个数是 .
故选:A
【点睛】
本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.
8、A
【分析】
利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.
【详解】
解:如图,
所以添加EF=BC,不能判定△ABC≌△DEF,故A符合题意;
延长 交于 添加,
△ABC≌△DEF,故B,C不符合题意;
添加AB=DE,能判定△ABC≌△DEF,故D不符合题意;
故选A
【点睛】
本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.
9、B
【分析】
将根据完全平方公式展开,进而根据代数式相等即可求解
【详解】
解:∵ ,ax2+24x+b=(mx﹣3)2,
∴
即
故选B
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
10、A
【分析】
过铅球C作CB⊥底面AB于B,在Rt△ABC中,AC=5米,根据锐角三角函数sin31°=,即可求解.
【详解】
解:过铅球C作CB⊥底面AB于B,
如图在Rt△ABC中,AC=5米,则sin31°=,
∴BC=sin31°×AC=5sin31°.
故选择A.
【点睛】
本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键.
二、填空题
1、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
2、3
【分析】
从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字,进而得到答案.
【详解】
解:近似数0.0320有3、2、0等3个有效数字
故答案为:3.
【点睛】
本题考查了近似数的有效数字.解题的关键在于明确:从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字.
3、②④
【分析】
根据无理数是无限不循环小数进行判断即可.
【详解】
解:①﹣是分数,属于有理数;
②π是无理数;
③2.131131113是有限小数,属于有理数;
④是无理数;
⑤0是整数,属于有理数;
⑥=﹣2是有理数;
故答案为:②④.
【点睛】
本题考查了有理数与无理数的定义与分类.解题的关键在于正确理解有理数与无理数的定义与分类.
4、线段的垂直平分线
【分析】
根据到两点的距离相等的点在线段的垂直平分线上可得结论
【详解】
解:根据到两点的距离相等的点在线段的垂直平分线上可知,
经过定点A、B的圆心轨迹是线段的垂直平分线
故答案为:线段的垂直平分线
【点睛】
本题考查了垂直平分线的性质判定,理解题意是解题的关键.
5、40
【分析】
根据角平分线的判定定理,可得 ,再由,可得 ,即可求解.
【详解】
解:∵,,,
∴ ,
∵,,
∴ ,
∴ .
故答案为:40
【点睛】
本题主要考查了角平分线的判定定理,直角三角形两锐角互余,熟练掌握再角的内部,到角两边距离相等的点再角平分线上是解题的关键.
三、解答题
1、
(1),数轴见解析
(2),数轴见解析
(3)-1<x≤2,数轴见解析
(4)x≤-10,数轴见解析
【分析】
(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;
(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;
(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;
(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;
【小题1】
解:,
去括号得:,
移项合并得:,
解得:,
在数轴上表示为:
【小题2】
,
去分母得:,
去括号得:,
移项合并得:,
在数轴上表示为:
【小题3】
,
由①得:x>-1,
由②得:x≤2,
不等式组的解集为:-1<x≤2,
在数轴上表示为:
【小题4】
,
由①得:x<-4,
由②得:x≤-10,
不等式组的解集为:x≤-10,
在数轴上表示为:
【点睛】
此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键.
2、
(1)①(6,4);②(3,-2)
(2)的值为
【分析】
(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;
(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.
(1)
解:①如图1中,点关于点的对称平移点为.
故答案为:.
②若点为点关于点的对称平移点,则点的坐标为.
故答案为:;
(2)
解:如图2中,当时,四边形是梯形,
,,,
,
或(舍弃),
当时,同法可得,
综上所述,的值为.
【点睛】
本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
3、
(1)
(2)
【分析】
(1)先去括号,再移项合并同类项,即可求解;
(2)先去分母,再去括号,然后移项合并同类项,即可求解.
(1)
解:
去括号得:,
移项合并同类项得: ,
解得: ;
(2)
解:
去分母得: ,
去括号得: ,
移项合并同类项得: ,
解得: .
【点睛】
本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.
4、
(1)见解析
(2)见解析
(3)见解析
【分析】
(1)根据题意证明,,进而根据相似三角形对应边成比例,列出比例式,进而根据分式的性质化简即可得证;
(2)分别过点分别作垂直于,垂足分别为,根据(1)证明高的比的关系,进即可证明
(3)根据正方形的性质可得,进而可得,由,根据分式的性质即可证明.
(1)
证明:∵,
∴,
∴,
(2)
如图,分别过点分别作垂直于,垂足分别为,
∵,
∴,
∴,
(3)
四边形是正方形
,,
【点睛】
本题考查了相似三角形的性质与判定,分式的性质,掌握相似三角形的性质与判定是解题的关键.
5、
(1)44,22
(2)0.2元
(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利
【分析】
(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;
(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;
(3)方案一:先确定天数天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数×每天完成包数×天数x+大包口罩片数×每天完成包数×(7-小包天数x)=44万,列方程,解方程求出 .再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可
(1)
解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,
故答案为44;22;
(2)
解:(元).
(元).
(元).
答:每片口罩的成本是0.2元.
(3)
方案一:全部大包销售:
天.
∴
(元).
方案二:全部小包销售:
天>7天(舍去).
方案三:设包装小包的天数为x,
由题意得:.
解得:.
∴(片).
∴,
=23200+183200-12000-88000,
,
(元).
∵,
∴选择方案三.
答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.
【点睛】
本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键.
【历年真题】中考数学三年高频真题汇总卷(含答案详解): 这是一份【历年真题】中考数学三年高频真题汇总卷(含答案详解),共25页。试卷主要包含了抛物线的顶点坐标是,如图,在中,,,则的值为,下列图形是中心对称图形的是.等内容,欢迎下载使用。
【高频真题解析】2022年河北省中考数学三年真题模拟 卷(Ⅱ)(含答案及详解): 这是一份【高频真题解析】2022年河北省中考数学三年真题模拟 卷(Ⅱ)(含答案及详解),共27页。试卷主要包含了已知+=0,则a-b的值是 .,下列说法,下列运算中,正确的是,若,则下列不等式正确的是等内容,欢迎下载使用。
【高频真题解析】2022年石家庄新华区中考数学三年真题模拟 卷(Ⅱ)(含详解): 这是一份【高频真题解析】2022年石家庄新华区中考数学三年真题模拟 卷(Ⅱ)(含详解),共24页。试卷主要包含了下列说法中正确的个数是,已知+=0,则a-b的值是 .等内容,欢迎下载使用。