【高频真题解析】2022年四川省渠县中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)
展开2022年四川省渠县中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
2、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )
A. B. C. D.
3、若,则代数式的值为( )
A.6 B.8 C.12 D.16
4、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
5、下列方程中,解为的方程是( )
A. B. C. D.
6、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )
A. B. C. D.
7、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )
A.① B.② C.③ D.②③
8、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )
A. B. C. D.
9、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
10、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个实数的平方根为与,则这个实数是________.
2、如图,是的中线,,,把沿翻折,使点落在的位置,则为___.
3、已知三点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,若a<0<b<c,则m、n和t的大小关系是 ___.(用“<”连接)
4、如图,直线l1∥l2∥l3,直线l4,l5被直线l1、l2、l3所截,截得的线段分别为AB,BC,DE,EF,若AB=4,BC=6,DE=3,则EF的长是 ______.
5、如图,在一条可以折叠的数轴上,A、B两点表示的数分别是,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且,则C点表示的数是______.
三、解答题(5小题,每小题10分,共计50分)
1、下列是我们常见的几何体,按要求将其分类(只填写编号).
(1)如果按“柱”“锥球”来分,柱体有______,椎体有______,球有______;
(2)如果按“有无曲面”来分,有曲面的有______,无曲面的有______.
2、如图,是内部的一条射线,是内部的一条射线,是内部的一条射线.
(1)如图1,、分别是、的角平分线,已知,,求的度数;
(2)如图2,若,,且,求的度数.
3、如图,点、分别为的边、的中点,,则______.
4、如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC·BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,连接DF
(1)求证:AE=AC;
(2)设,,求关于的函数关系式及其定义域;
(3)当△ABC与△DEF相似时,求边BC的长.
5、先化简,再求值:,其中.
-参考答案-
一、单选题
1、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
2、C
【分析】
列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:列表如下:
| 郑 | 外 | 加 | 油 |
郑 |
| 外,郑 | 加,郑 | 油,郑 |
外 | 郑,外 |
| 加,外 | 油,外 |
加 | 郑,加 | 外,加 |
| 油,加 |
油 | 郑,油 | 外,油 | 加,油 |
|
由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果,
所以抽到的汉字恰好是“郑”和“外”的概率为.
故选:C.
【点睛】
本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
3、D
【分析】
对已知条件变形为:,然后等式两边再同时平方即可求解.
【详解】
解:由已知条件可知:,
上述等式两边平方得到:,
整理得到:,
故选:D.
【点睛】
本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.
4、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点
5、B
【分析】
把x=5代入各个方程,看看是否相等即可
【详解】
解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;
B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;
C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;
D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;
故选:B
【点睛】
本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键
6、C
【分析】
由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.
【详解】
解:设圆心为O,连接OB.
Rt△OBC中,BC=AB=20cm,
根据勾股定理得:
OC2+BC2=OB2,即:
(OB-10)2+202=OB2,
解得:OB=25;
故轮子的半径为25cm.
故选:C.
【点睛】
本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
7、B
【分析】
把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
【详解】
解:∵点M(a,b)在抛物线y=x(2-x)上,
当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
∵△=4-4×(-3)>0,
∴有两个不相等的值,
∴点M的个数为2,故①错误;
当b=1时,1=a(2-a),整理得a2-2a+1=0,
∵△=4-4×1=0,
∴a有两个相同的值,
∴点M的个数为1,故②正确;
当b=3时,3=a(2-a),整理得a2-2a+3=0,
∵△=4-4×3<0,
∴点M的个数为0,故③错误;
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
8、C
【分析】
根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.
【详解】
解: ∵一圆锥高为4cm,底面半径为3cm,
∴圆锥母线=,
∴圆锥的侧面积=(cm2).
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
9、C
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
10、D
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
二、填空题
1、
【分析】
根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.
【详解】
解:根据题意得:
①这个实数为正数时:
3x+3+x-1=0,
∴x=-,
∴(x-1)2=,
②这个实数为0时:
3x+3=x-1,
∴x=-2,
∵x-1=-3≠0,
∴这个实数不为0.
故答案为:.
【点睛】
本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.
2、
【分析】
根据翻折知:∠ADE=∠ADC=45°,ED=EC,得到∠BDE=90°,利用勾股定理计算即可.
【详解】
解:是的中线,
,
翻折,
,,
,,
在中,由勾股定理得:,
故答案为:.
【点睛】
本题考查的是翻折变换以及勾股定理,熟记翻折前后图形的对应角相等、对应边相等是解题的关键.
3、
【分析】
先画出反比例函数y=(k>0)的图象,在函数图象上描出点(a,m)、(b,n)和(c,t),再利用函数图象可得答案.
【详解】
解:如图,反比例函数y=(k>0)的图像在第一,三象限,
而点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,a<0<b<c,
即
故答案为:
【点睛】
本题考查的是反比例函数的图象与性质,掌握“利用数形结合比较反比例函数值的大小”是解本题的关键.
4、4.5
【分析】
根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.
【详解】
解:∵l1//l2//l3,
∴,
∵AB=4,BC=6,DE=3,
∴,
解得:EF=4.5,
故答案为:4.5.
【点睛】
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
5、
【分析】
根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.
【详解】
解:∵A,B表示的数为-7,3,
∴AB=3-(-7)=4+7=10,
∵折叠后AB=2,
∴BC==4,
∵点C在B的左侧,
∴C点表示的数为3-4=-1.
故答案为:-1.
【点睛】
本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.
三、解答题
1、
(1)①②⑥;③④;⑤
(2)②③⑤;①④⑥
【分析】
(1)根据立体图形的特点从柱体的形状特征考虑.
(2)根据面的形状特征考虑.
(1)
解:∵(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱,
∴柱体有(1),(2),(6),锥体有(3),(4),球有(5),
故答案为:(1),(2),(6);(3),(4);(5);
(2)
∵(2)(3)(5)有曲面,其它几何体无曲面,
∴按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),
故答案为:(2),(3),(5);(1),(4),(6).
【点睛】
本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征.
2、
(1)110°
(2)100°
【分析】
(1)由OM是∠AOB的角平分线,∠AOB=30°,得到,则∠BON=∠MON-∠BOM=55°,再由ON是∠BOC的角平分线,得到∠BOC=2∠BON=110°;
(2)设∠AOM=∠NOC=x,则∠AOB=4x,可推出∠BOM=3x,∠BOM:∠BON=3:2,得到∠BON=2x,根据∠AOC=∠AOB+∠BON+∠NOC=7x=140°,得到x=20°,则∠MON=∠BOM+∠BON=5x=100°.
(1)
解:∵OM是∠AOB的角平分线,∠AOB=30°,
∴,
∵∠MON=70°,
∴∠BON=∠MON-∠BOM=55°,
∵ON是∠BOC的角平分线,
∴∠BOC=2∠BON=110°;
(2)
解:设∠AOM=∠NOC=x,则∠AOB=4x,
∴∠BOM=∠AOB-∠AOM=3x,
∵∠BOM:∠BON=3:2,
∴∠BON=2x,
∴∠AOC=∠AOB+∠BON+∠NOC=7x=140°,
∴x=20°,
∴∠MON=∠BOM+∠BON=5x=100°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识.
3、6
【分析】
根据三角形中位线定理解答即可.
【详解】
解:∵D,E分别是△ABC的边AB,BC的中点,
∴DE是△ABC的中位线,
∴AC=2DE=6,
故答案为:6.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
4、
(1)证明见解析
(2),
(3)或
【分析】
(1)由题意可证得,,即∠EAB=∠CAB,则可得,故AE=AC.
(2)可证得,故有,在中由勾股定理有,联立后化简可得出,BC的定义域为.
(3)由(1)(2)问可设,,,,若△ABC与△DEF相似时,则有和两种情况,再由对应边成比例列式代入化简即可求得x的值.
(1)
∵AB2=BC·BD
∴
又∵∠ACB=∠DAB=90°
∴
∴∠ADB=∠CAB
在Rt△EBA与Rt△ABD中
∠AEB=∠DAB=90°,∠ABD=∠ABD
∴
∴∠ADB=∠EAB
∴∠EAB =∠CAB
在Rt△EBA与Rt△CAB中
∠EAB =∠CAB
AB=AB
∠ACB=∠AEB=90°
∴
∴AE=AC
(2)
∵∠ACB=∠FEB=90°,∠F=∠F
∴
∴
∴
在中由勾股定理有
即
代入化简得
由(1)问知AC=AE,BE=BC=x
则
式子左右两边减去得
式子左右两边同时除以得
∵
∴
在中由勾股定理有
即
∴
移项、合并同类项得,
由图象可知BC的取值范围为.
(3)
由(1)、(2)问可得
,,,
当时
由(1)问知
即
则
化简为
约分得
移向,合并同类项得
则或(舍)
当时
由(1)问知
即
则
化简得
约分得
移项得
去括号得
移向、合并同类项得
则或(舍)
综上所述当△ABC与△DEF相似时, BC的长为或.
【点睛】
本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键.
5、﹣xy﹣y2,﹣8
【分析】
根据平方差公式,完全平方公式,多项式乘以多项式运算法则化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
解:,
=,
=,
=﹣xy﹣y2,
当时,
原式=(﹣3)2=﹣8.
【点睛】
本题考查整式的混合运算-化简求值,解答本题的关键是熟记乘法公式整式的化简求值的方法.
【历年真题】2022年四川省渠县中考数学模拟测评 卷(Ⅰ)(含答案及解析): 这是一份【历年真题】2022年四川省渠县中考数学模拟测评 卷(Ⅰ)(含答案及解析),共24页。试卷主要包含了已知点等内容,欢迎下载使用。
【历年真题】2022年四川省渠县中考数学模拟测评 卷(Ⅰ)(含答案解析): 这是一份【历年真题】2022年四川省渠县中考数学模拟测评 卷(Ⅰ)(含答案解析),共22页。试卷主要包含了的值.等内容,欢迎下载使用。
【历年真题】2022年四川省渠县中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【历年真题】2022年四川省渠县中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共26页。试卷主要包含了下列各数中,是无理数的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。