【高频真题解析】2022年江苏省南通市中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析)
展开2022年江苏省南通市中考数学备考真题模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.无法判断
2、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
3、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
4、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
5、若二次函数的图象经过点,则a的值为( )
A.-2 B.2 C.-1 D.1
6、下列计算中正确的是( )
A. B. C. D.
7、下列各组数据中,能作为直角三角形的三边长的是( )
A.,, B.4,9,11 C.6,15,17 D.7,24,25
8、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
9、如图所示,该几何体的俯视图是
A. B.
C. D.
10、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足﹣3≤y≤4,则满足条件的所有整数m的和为( )
A.17 B.20 C.22 D.25
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若使多项式中不含有的项,则__________.
2、若a和b互为相反数,c和d互为倒数,则的值是________________.
3、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.
4、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
5、如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD,∠AOC=28°24′,则∠COE=______,图中与∠COE互补的角有______.
三、解答题(5小题,每小题10分,共计50分)
1、上海迪士尼乐园调查了部分游客前往乐园的交通方式,并绘制了如下统计图.已知选择“自驾”方式的人数是调查总人数的,选择“其它”方式的人数是选择“自驾”人数的,根据图中提供的信息,回答下列问题:
(1)本次调查的总人数是多少人?
(2)选择“公交”方式的人数占调查总人数的几分之几?
2、在数轴上,点A表示,点B表示20,动点P、Q分别从A、B两点同时出发.
(1)如图1,若P、Q相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P的速度为 个单位长度/秒,点Q的速度为 个单位长度/秒;
(2)如图2,若在原点O处放一块挡板.P、Q均以(1)中的速度同时向左运动,点Q在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t(秒),试探究:
①若点Q两次经过数轴上表示12的点的间隔是5秒,求点Q碰到挡板后的运动速度;
②若点Q碰到挡板后速度变为原速度的2倍,求运动过程中P、Q两点到原点距离相等的时间t.
3、如图,在Rt△ABC中,,cm.点D从A出发沿AC以1cm/s的速度向点C移动;同时,点F从B出发沿BC以2cm/s的速度向点C移动,移动过程中始终保持(点E在AB上).当其中一点到达终点时,另一点也同时停止移动.设移动时间为t(s)(其中).
(1)当t为何值时,四边形DEFC的面积为18?
(2)是否存在某个时刻t,使得,若存在,求出t的值,若不存在,请说明理由.
(3)点E是否可能在以DF为直径的圆上?若能,求出此时t的值,若不能,请说明理由.
4、计算:
5、A市出租车收费标准如下:
行程(千米) | 3千米以内 | 满3千米但不超过8千米的部分 | 8千米以上的部分 |
收费标准(元) | 10元 | 2.4元/千米 | 3元/千米 |
(1)若甲、乙两地相距6千米,乘出租车从甲地到乙地需要付款多少元?
(2)某人从火车站乘出租车到旅馆,下车时计费表显示19.6元,请你帮忙算一算从火车站到旅馆的距离有多远?
(3)小明乘飞机来到A市,小刚从旅馆乘出租车到机场去接小明,到达机场时计费表显示73元,接完小明,立即沿原路返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返回和换乘另外的出租车,哪种更便宜?
-参考答案-
一、单选题
1、B
【分析】
根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.
【详解】
解:∵Δ=(-2)2-4×1×(-4)= 20>0,
∴方程x2-2x-4=0有两个不相等的实数根.
故选:B.
【点睛】
本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.
2、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
3、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
4、C
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
5、C
【分析】
把(-2,-4)代入函数y=ax2中,即可求a.
【详解】
解:把(-2,-4)代入函数y=ax2,得
4a=-4,
解得a=-1.
故选:C.
【点睛】
本题考查了点与函数的关系,解题的关键是代入求值.
6、B
【分析】
根据绝对值,合并同类项和乘方法则分别计算即可.
【详解】
解:A、,故选项错误;
B、,故选项正确;
C、不能合并计算,故选项错误;
D、,故选项错误;
故选B.
【点睛】
本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.
7、D
【分析】
由题意直接依据勾股定理的逆定理逐项进行判断即可.
【详解】
解:A.∵,
∴,,为边不能组成直角三角形,故本选项不符合题意;
B.∵42+92≠112,
∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;
C.∵62+152≠172,
∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;
D.∵72+242=252,
∴以7,24,25为边能组成直角三角形,故本选项符合题意;
故选:D.
【点睛】
本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.
8、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
9、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
10、B
【分析】
根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.
【详解】
解:由不等式组可知:x≤5且x≥,
∵有解且至多有3个整数解,
∴2<≤5,
∴2<m≤8,
由分式方程可知:y=m-3,
将y=m-3代入y-2≠0,
∴m≠5,
∵-3≤y≤4,
∴-3≤m-3≤4,
∵m是整数,
∴0≤m≤7,
综上,2<m≤7,
∴所有满足条件的整数m有:3、4、6、7,共4个,
和为:3+4+6+7=20.
故选:B.
【点睛】
本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型.
二、填空题
1、
【分析】
由于多项式含有项的有,若不含项,则它们的系数为0,由此即可求出m值.
【详解】
解:∵多项式中不含项,
∴的系数为0,
即=0,
.
故答案为.
【点睛】
本题难度较低,主要考查学生对合并同类项的掌握,先将原多项式合并同类项,再令项的系数为0,然后解关于m的方程即可求解.
2、-2020
【分析】
利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.
【详解】
解:∵a,b互为相反数,c,d互为倒数,
∴a+b=0,cd=1,
则.
故答案为:-2020.
【点睛】
本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.
3、140
【分析】
根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.
【详解】
解:∵∠A′NM=20°,∠CNE=∠A′NM,
∴∠CNE=20°,
∵DE∥BC,
∴∠DEN=∠CNE=20°,
由翻折性质得:∠AED=∠DEN=20°,
∴∠AEN=40°,
∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.
故答案为:140
【点睛】
本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.
4、
【分析】
如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.
【详解】
解:如图,取的中点,连接,,,
将线段MN绕点M顺时针旋转60°得到线段MQ,
,
是等边三角形,
,
是的中点,是的中点
是等边三角形
,
即
在和中,
又
是的中点
点在上
是的中点,是等边三角,
又
垂直平分
即的最小值为
四边形是正方形,且
的最小值为
故答案为:
【点睛】
本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.
5、61°36′(或61.6°) ,
【分析】
根据直角和互余、互补的定义求出即可;.
【详解】
解:与互余的角是,;
,
(或61.6°);
,
是的互补角,
,
,
,
是的互补角,
互补的角是,,
故答案为:61°36′(或61.6°);,.
【点睛】
本题考查了角的有关计算,互余、互补等知识点的应用,解题的关键是掌握互余、互补的定义,互余的两个角的和为,互补的两个角的和.
三、解答题
1、
(1)120;
(2)
【分析】
(1)用自驾的人数除以所占百分数计算即可;
(2)先计算出乘公交的人数=总人数-自驾人数-其它人数,后计算即可.
(1)
∵ “自驾”方式的人数是32人,且是调查总人数的,
∴总人数为:32÷=120(人).
(2)
∵选择“其它”方式的人数是选择“自驾”人数的,“自驾”方式的人数是32人,
∴选择“其它”方式的人数是32×=20(人)
∴选择公交的人数是:120-32-20=68(人),
∴选择“公交”方式的人数占调查总人数的.
【点睛】
本题考查了条形统计图,样本估计整体,正确获取解题信息是解题的关键.
2、
(1)2,3
(2)①12个单位长度/秒;②2秒或秒
【分析】
(1)设P、Q的速度分别为2x,3x,由两点路程之和=两点之间的距离,列方程即可求解;
(2)解:①点Q第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;
②分两种情况:当P、Q都向左运动时和当Q返回向右运动时即可求解.
(1)
解:设P、Q的速度分别为2x,3x,
由题意,得:6(2x+3x)=20-(-10),
解得:x=1,
故2x=2,3x=3,
故答案为:2,3;
(2)
解:①,.
答:点Q碰到挡板后的运动速度为12个单位长度/秒.
②当P、Q都向左运动时,
解得:.
当Q返回向右运动时,
解得:.
答:P、Q两点到原点距离相等时经历的时间为2秒或秒.
【点睛】
本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.
3、
(1)
(2)不存在,说明见解析
(3)能,
【分析】
(1)由题意知,四边形为梯形,则,,求t的值,由得出结果即可;
(2)假设存在某个时刻t,则有,解得t的值,若,则存在;否则不存在;
(3)假设点E在以DF为直径的圆上,则四边形DEFC为矩形,,故有,求t的值,若,则存在;否则不存在.
(1)
解:∵
∴是等腰直角三角形,
∵
∴,
∴是等腰直角三角形,四边形为直角梯形
∴
∵
∴
∵
∴
解得或.
∵且
∴
∴.
(2)
解:假设存在某个时刻t,使得.
∴
化简得
解得或
∵
∴不存在某个时刻t,使得.
(3)
解:假设点E在以DF为直径的圆上,则四边形DEFC为矩形
∴,即
解得
∵
∴当时,点E在以DF为直径的圆上.
【点睛】
本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点.解题的关键在于正确的表示线段的长度.
4、
【分析】
先根据绝对值的意义、负整数指数幂的性质、二次根式的化简和零指数幂分别化简,再计算即可.
【详解】
解:原式
【点睛】
此题考查了实数的混合运算,掌握相应的运算性质和运算法则是解答此题的关键.
5、
(1)17.2元
(2)7千米
(3)换乘另外出租车更便宜
【分析】
(1)根据图表和甲、乙两地相距6千米,列出算式,再进行计算即可;
(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;
(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为x千米,根据图表中的数量,列出方程,求出x的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.
(1)
10+2.4×(6-3)=17.2(元),
答:乘出租车从甲地到乙地需要付款17.2元;
(2)
设火车站到旅馆的距离为x千米.
10+2.4×5=22,
∵10<19.6<22,∴3≤x≤8,
10+2.4(x-3)=19.2,
∴x=7,符合题意.
答:从火车站到旅馆的距离有7千米;
(3)
)设旅馆到机场的距离为x千米,
∵73>22,
∴x>8.
10+2.4(8-3)+3(x-8)=73,
∴x=25.
所以乘原车返回的费用为:10+2.4×(8-3)+3×(25×2-8)=148(元);
换乘另外车辆的费用为:73×2=146(元)所以换乘另外出租车更便宜.
【点睛】
此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
【高频真题解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析): 这是一份【高频真题解析】湖南省中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析),共30页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。
【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【高频真题解析】湖南省邵阳市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共28页。试卷主要包含了生活中常见的探照灯,利用如图①所示的长为a,下列图形是全等图形的是等内容,欢迎下载使用。
【高频真题解析】2022年福建省莆田中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析): 这是一份【高频真题解析】2022年福建省莆田中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析),共18页。