【真题汇编】2022年江苏省南通市中考数学三年真题模拟 卷(Ⅱ)(含答案详解)
展开2022年江苏省南通市中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
2、若,则下列分式化简正确的是( )
A. B. C. D.
3、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
4、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、若+(3y+4)2=0,则yx的值为( )
A. B.- C.- D.
6、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
7、已知,,在二次函数的图象上,,,则的大小关系是( )
A. B. C. D.
8、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
9、下列计算正确的是( )
A. B. C. D.
10、下列计算正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某数的相反数是﹣2,那么该数的倒数是 __________________.
2、已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是_____.
3、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
4、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
5、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x日追上驽马,根据题意,可列方程为______,x的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数的图像为抛物线C.
(1)抛物线C顶点坐标为______;
(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,请判断抛物线是否经过点,并说明理由;
(3)当时,求该二次函数的函数值y的取值范围.
2、某口罩生产厂家今年9月份生产口罩的数量为200万个,11月份生产口罩的数量达到242万个,且从9月份到11月份,每月的平均增长率都相同.
(1)求每月生产口罩的平均增长率;
(2)按照这个平均增长率,预计12月份这口罩生产厂家生产口罩的数量达到多少万个?
3、(1)解方程:x²-2x-8=0;
(2)计算:5sin60°-cos245°.
4、(1)先化简再求值:,其中.
(2)解方程:.
5、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
-参考答案-
一、单选题
1、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
2、C
【分析】
由,令,再逐一通过计算判断各选项,从而可得答案.
【详解】
解:当,时,
,,故A不符合题意;
,故B不符合题意;
而 故C符合题意;
.故D不符合题意
故选:C.
【点睛】
本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.
3、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
4、D
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、A
【分析】
根据绝对值的非负性及偶次方的非负性得到x-2=0,3y+4=0,求出x、y的值代入计算即可
【详解】
解:∵+(3y+4)2=0,
∴x-2=0,3y+4=0,
∴x=2,y=,
∴,
故选:A.
【点睛】
此题考查了已知字母的值求代数式的值,正确掌握绝对值的非负性及偶次方的非负性是解题的关键.
6、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
7、B
【分析】
由抛物线开口向下且对称轴为直线x=-3知离对称轴水平距离越远,函数值越大,据此求解可得.
【详解】
解:∵二次函数中a=-1<0,
∴抛物线开口向下,有最大值.
∵x=-=-3,
∴离对称轴水平距离越远,函数值越小,
∵-3-(-3)<-1-(-3)<4-(-3),
∴.
故选:B.
【点睛】
本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.
8、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
9、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
10、D
【分析】
根据合并同类项法则合并同类项,进行计算即可.
【详解】
A.,故选项A错误;
B. 不是同类项,不能合并,故选项B错误;
C.,故选项C错误;
D.,故选项D正确.
故选D.
【点睛】
本题考查了同类项和合并同类项,掌握同类项定义,所含字母相同,相同字母的指数也相同的项是同类项,合并同类项法则只把同类项的系数相加减字母和字母的指数不变是解题的关键.
二、填空题
1、
【分析】
根据相反数与倒数的概念可得答案.
【详解】
解:∵某数的相反数是﹣2,
∴这个数为2,
∴该数的倒数是.
故答案为:.
【点睛】
本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.
2、2﹣2
【分析】
先证出点P是线段AB的黄金分割点,再由黄金分割点的定义得到AP=AB,把AB=4代入计算即可.
【详解】
解:∵点P在线段AB上,AP2=AB•BP,
∴点P是线段AB的黄金分割点,AP>BP,
∴AP=AB=×4=2﹣2,
故答案为:2﹣2.
【点睛】
本题考查了黄金分割点,牢记黄金分割比是解题的关键.
3、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
4、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
5、240x=150× (12+x) 20
【分析】
设良马x日追上驽马,根据驽马先行的路程=两马速度之差×良马行走天数,即可列出关于x的一元一次方程,解之即可.
【详解】
解:设良马x日追上驽马,
由题意,得240x=150× (12+x).
解得:x=20,
故答案为:240x=150× (12+x),20.
【点睛】
本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
三、解答题
1、
(1)
(2)不经过,说明见解析
(3)
【分析】
(1)一般解析式化为顶点式,进行求解即可.
(2)由题意得出平移后的函数表达式,将点横坐标2代入,求纵坐标的值并与3比较,相等则抛物线过该点.
(3)先判断该函数图像开口向上,对称轴在所求自变量的范围内,可求得函数值的最小值,然后将代入解析式求解,取最大的函数值,进而得出取值范围.
(1)
解:化成顶点式为
∴顶点坐标为
故答案为:.
(2)
解:由题意知抛物线的解析式为
将代入解析式解得
∴不经过点.
(3)
解:∵对称轴直线在中
∴最小的函数值
将代入解析式得
将代入解析式得
∵
∴函数值的取值范围为.
【点睛】
本题考查了二次函数值顶点式,图像的平移,函数值的取值范围等知识.解题的关键在于正确的表示出函数解析式.
2、
(1)10%
(2)266.2万个
【分析】
(1)设每月的平均增长率为x,根据9月份及11月份的生产量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据12月份的生产量=11月份的生产量×(1+增长率),即可求出结论.
(1)
设每月生产口罩的平均增长率为x,根据题意得,
解得:,(不合题意,舍去)
答:每月生产口罩的平均增长率为10%.
(2)
(万个)
答:预计12月份这生产厂家生产口罩的数量达到266.2万个.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
3、(1);(2)
【分析】
(1)利用因式分解法求解;
(2)代入特殊角的三角函数值计算即可.
【详解】
解:(1)x²-2x-8=0
∴;
(2)原式=
=.
【点睛】
此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.
4、(1),;(2)无解
【分析】
(1)根据分式的各运算法则进行化简,再代入计算即可;
(2)根据分式方程的解法进行求解即可.
【详解】
解:(1)
,
当时,原式;
(2),
方程两边都乘,得,
解得:,
检验:当时,,所以是原方程的增根,
即原方程无解.
【点睛】
本题考查了分式的化简求值,解分式方程,熟练掌握各运算法则是解题的关键.
5、
(1)静水中的速度是16千米/小时,水流速度是4千米/小时
(2)75千米
【分析】
(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.
【小题1】
解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,
依题意,得:,
解得:,
答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.
【小题2】
设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,
依题意,得:,
解得:a=75,
答:甲、丙两地相距75千米.
【点睛】
本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解): 这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。