2021学年18.2.3 正方形教课内容ppt课件
展开
这是一份2021学年18.2.3 正方形教课内容ppt课件,共22页。PPT课件主要包含了学习目标,情景导入,知识精讲,邻边相等,正方形,一个角是直角,平行四边形,针对练习,先判定菱形,先判定矩形等内容,欢迎下载使用。
1.掌握正方形的概念、性质和判定.2.理解正方形与平行四边形、矩形、菱形的联系和区别.3.会运用正方形的性质和判定条件进行有关的论证和计算.重点难点:1.正方形的性质和判定条件进行有关的论证和计算. 2.会应用正方形的性质解决相关证明及计算问题.
观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.
图片中出现的图形是正方形,那么什么是正方形呢?这节课让我们一起来学习吧.
知识点一 正方形的性质
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫正方形.
已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.
证明:∵四边形ABCD是正方形.∴∠A=90°, AB=AC (正方形的定义). 又∵正方形是平行四边形.∴正方形是矩形(矩形的定义), 正方形是菱形(菱形的定义).∴∠A=∠B =∠C =∠D = 90°, AB= BC=CD=AD.
已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.
证明:∵正方形ABCD是矩形, ∴AO=BO=CO=DO. ∵正方形ABCD是菱形. ∴AC⊥BD.
正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.
平行四边形、矩形、菱形、正方形之间关系:
性质:1.正方形的四个角都是直角,四条边相等. 2.正方形的对角线相等且互相垂直平分.
例1 求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
已知: 如图,四边形ABCD是正方形,对角线AC、BD相 交于点O.
求证: △ABO、 △BCO、 △CDO、 △DAO是全等的等腰直角三角形.
证明: ∵ 四边形ABCD是正方形,∴ AC=BD,AC⊥BD,AO=BO=CO=DO.∴ △ABO、 △BCO、 △CDO、 △DAO都是等腰直角三角形,并且△ABO≌ △BCO ≌ △CDO ≌ △DAO.
1.正方形具有而矩形不一定具有的性质是 ( ) A.四个角相等 B.对角线互相垂直平分 C.对角互补 D.对角线相等
2.正方形具有而菱形不一定具有的性质( )A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等
知识点一 正方形的判定
已知:如图,在矩形ABCD中,AC , DB是它的两条对角线, AC⊥DB.求证:四边形ABCD是正方形.证明:∵四边形ABCD是矩形, ∴ AO=CO=BO=DO ,∠ADC=90°. ∵AC⊥DB, ∴ AD=AB=BC=CD, ∴四边形ABCD是正方形.
猜想1:对角线互相垂直的矩形是正方形.
已知:如图,在菱形ABCD中,AC , DB是它的两条对角线, AC=DB.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥DB.∵AC=DB,∴ AO=BO=CO=DO,∴△AOD,△AOB,△COD,△BOC是等腰直角三角形,∴∠DAB=∠ABC=∠BCD=∠ADC=90°, ∴四边形ABCD是正方形.
猜想2:对角线相等的菱形是正方形.
正方形判定的几条途径:
一组邻边相等,对角线垂直
证明:∵ DE⊥AC,DF⊥AB ,∴∠DEC= ∠DFC=90°.又∵ ∠C=90 °,∴四边形EDFC是矩形.过点D作DG⊥AB,垂足为G.∵AD是∠CAB的平分线,DE⊥AC,DG⊥AB,∴ DE=DG.同理得DG=DF,∴ED=DF,∴四边形EDFC是正方形.
例2 如图,在直角三角形中,∠C=90°,∠A、∠B的平分线交于点D.DE⊥AC,DF⊥AB.求证:四边形CEDF为正方形.
1.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC
2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,四边形ABCD是菱形 B.当AC⊥BD时,四边形ABCD是菱形 C.当∠ABC=90°时,四边形ABCD是矩形 D.当AC=BD时,四边形ABCD是正方形
2.一个正方形的对角线长为2cm,则它的面积是 ( )A.2cm2 B.4cm2 C.6cm2 D.8cm2
1.平行四边形、矩形、菱形、正方形都具有的是( ) A.对角线互相平分 B.对角线互相垂直 C.对角线相等 D.对角线互相垂直且相等
3.如图,四边形ABCD中,∠ABC=∠BCD=∠CDA=90°,请添加一个条件____________________,可得出该四边形是正方形.
AB=BC(答案不唯一)
4.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,其中错误的是____________(只填写序号).
5. 如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.
解:BE=DF,且BE⊥DF.理由如下:∵四边形ABCD是正方形.∴BC=DC,∠BCE =90° .∴∠DCF=180°-∠BCE=90°.∴∠BCE=∠DCF.又∵CE=CF.∴△BCE≌△DCF.∴BE=DF.
6.如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.(1)试说明四边形AEDF的形状,并说明理由;(2)连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?
解:(1)∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形.(2)∵四边形AEDF为菱形,∴AD平分∠BAC,∴当AD平分∠BAC时,四边形AEDF为菱形.
3.对角线相等且互相垂直平分
有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.
相关课件
这是一份人教版八年级下册18.2.3 正方形说课ppt课件,共27页。PPT课件主要包含了平行四边形,正方形,韦恩图,对角线,轴对称图形,四边形,三个角是直角,四条边相等,四个判定定理,对角线相等等内容,欢迎下载使用。
这是一份人教版八年级下册18.2.3 正方形示范课ppt课件,共26页。PPT课件主要包含了平行四边形,正方形,韦恩图,对角线,轴对称图形,四边形,三个角是直角,四条边相等,四个判定定理,对角线相等等内容,欢迎下载使用。
这是一份人教版八年级下册18.2.3 正方形课文配套课件ppt,共24页。PPT课件主要包含了正方形,正方形的定义,大家谈,正方形的性质,范例精讲,下面大家自己完成证明,△CMD≌△ADF,下面的证明请大家完成,有一组邻边相等,有一个角是直角等内容,欢迎下载使用。