终身会员
搜索
    上传资料 赚现金

    高中数学:1.3.1《相似三角形的判定1》教案(新人教A版选修4-1)

    立即下载
    加入资料篮
    高中数学:1.3.1《相似三角形的判定1》教案(新人教A版选修4-1)第1页
    高中数学:1.3.1《相似三角形的判定1》教案(新人教A版选修4-1)第2页
    高中数学:1.3.1《相似三角形的判定1》教案(新人教A版选修4-1)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修4-1第一讲 相似三角形的判定及有关性质三 相似三角形的判定及性质教学设计及反思

    展开

    这是一份人教版新课标A选修4-1第一讲 相似三角形的判定及有关性质三 相似三角形的判定及性质教学设计及反思,共7页。教案主要包含了教学目标,重点,例题的意图,课堂引入,例题讲解,课堂练习,课后练习等内容,欢迎下载使用。


    相似三角形的判定(一)

    一、教学目标

    1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.

    2掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).

    3会运用两个三角形相似的判定条件三角形相似的预备定理解决简单的问题.

    二、重点、难点

    1.重点:相似三角形的定义与三角形相似的预备定理.

    2.难点:三角形相似的预备定理的应用.

    3.难点的突破方法

    1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错

    2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;

    3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;

    4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):

    ABC∽△ABC的相似比,那么ABC′∽△ABC的相似比就是,它们的关系是互为倒数.这一点在教学中科结合相似比放大或缩小的含义来让学生理解;

    5平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似定理也可以简单称为三角形相似的预备定理.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.

    三、例题的意图

    本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角

    2是让学生会运用三角形相似的预备定理解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.

    四、课堂引入

    1.复习引入

    1)相似多边形的主要特征是什么?

    2)在相似多边形中,最简单的就是相似三角形.

    ABCABC中,

    如果A=A,B=B,C=C, 

    我们就说ABCABC相似,记作ABCABCk就是它们的相似比.

    反之如果ABCABC

    则有A=A,B=B,C=C, 且

    3)问题:如果k=1,这两个三角形有怎样的关系?

    2.思考判断相似三角形的条件

    3归纳

    三角形相似的预备定理  平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.

    五、例题讲解

    1(补充)如图ABC∽△DCAADBCB=DCA

    1)写出对应边的比例式;

    2)写出所有相等的角;

    3)若AB=10,BC=12,CA=6.求ADDC的长.

    分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3可由相似三角形对应边的比相等求出ADDC的长

    解:略(AD=3DC=5

    2(补充)如图,在ABC中,DEBCAD=ECDB=1cmAE=4cmBC=5cm,求DE的长  

    分析:由DEBC,可得ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长

    解:略().

    六、课堂练习

    1.(选择)下列各组三角形一定相似的是(    

    A.两个直角三角形     B.两个钝角三角形 

    C.两个等腰三角形     D.两个等边三角形 

    2.(选择)如图,DEBCEFAB,则图中相似三角形一共有(    

    A1   B2   C3   D4

    3.如图,在ABCD中,EFABDE:EA=2:3EF=4,求CD的长. (CD= 10

    七、课后练习

    1.如图,ABC∽△AED, 其中DEBC,写出对应边的比例式

    2.如图,ABC∽△AED,其中ADE=B,写出对应边的比例式

                

    3.如图,DEBC

    1)如果AD=2DB=3DE:BC的值

    2)如果AD=8DB=12AC=15DE=7AEBC的长

    教学反思

     

    w.w.w.k.s.5.u.c.o.m www.ks5u.com相似三角形的判定

    一、教学目标

    1初步掌握三组对应边的比相等的两个三角形相似的判定方法,两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法.

    2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.

    3能够运用三角形相似的条件解决简单的问题.

    二、重点、难点

    1     重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.

    2     难点:(1)三角形相似的条件归纳、证明;

    2)会准确的运用两个三角形相似的条件来判定三角形是否相似.

    3     难点的突破方法

    1)关于三角形相似的判定方法1三组对应边的比相等的两个三角形相似,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解.

    2)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法.

    3)讲判定方法1时,要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边

    4)判定方法2一定要注意区别夹角相等 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.

    5)要让学生明确,两个判定方法说明:只要分别具备边或角的两个独立条件——“两边对应成比例,夹角相等三边对应成比例就能证明两个三角形相似.

    6)要让学生学会自觉总结如何正确的选择三角形相似的判定方法:这两种方法无论哪一个,首先必需要有两边对应成比例的条件,然后又有目标的去探求另一组条件,若能找到一组角相等,而这组对应角又是两组对应边的夹角时,则选用判定方法2,若不是夹角,则不能去判定两个三角形相似;若能找到第三边也成比例,则选用判定方法1

    7)两对应边成比例中的比例式既可以写成如的形式,也可以写成的形式.

    8)由比例的基本性质,两边对应成比例的条件也可以由等积式提供.

    、课堂引入

    1.复习提问:

    (1) 两个三角形全等有哪些判定方法?

    (2) 我们学习过哪些判定三角形相似的方法?

    (3) 全等三角形与相似三角形有怎样的关系?

    (4) 如图,如果要判定ABCA’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?

    2.(1)提出问题:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?

    2带领学生画图探究

    3归纳

    三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似

    31提出问题:怎样证明这个命题是正确的呢?

    2教师带领学生探求证明方法

    4用上面同样的方法进一步探究三角形相似的条件

    1提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?

    2)让学生画图,自主展开探究活动

    3归纳

    三角形相似的判定方法2  两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.

    、例题讲解

    1(补充)已知:如图,在四边形ABCD中,B=ACDAB=6BC=4AC=5CD=,求AD的长

    分析:由已知一对对应角相等及四条边长,猜想应用两组对应边的比相等且它们的夹角相等来证明.计算得出,结合B=ACD,证明ABC∽△DCA,再利用相似三角形的定义得出关于AD的比例式,从而求出AD的长

    解:略(AD=).

    、课堂练习

    1.如果在ABCB=30°AB=5㎝,AC=4㎝,在A’B’C’中,B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?

    3.如图,ABC中,DEF分别是ABBCCA的中点,求证:ABC∽△DEF

    2.如图,AB•AC=AD•AE,且1=2,求证:ABC∽△AED

    3.已知:如图,PABC中线AD上的一点,且BD2=PDAD

    求证:ADC∽△CDP

    教学反思



    w.w.w.k.s.5.u.c.o.m

    www.ks5u.com

    相关教案

    数学选修4-1三 相似三角形的判定及性质教学设计:

    这是一份数学选修4-1三 相似三角形的判定及性质教学设计,共3页。

    人教版新课标A选修4-1第一讲 相似三角形的判定及有关性质三 相似三角形的判定及性质教案设计:

    这是一份人教版新课标A选修4-1第一讲 相似三角形的判定及有关性质三 相似三角形的判定及性质教案设计,共6页。教案主要包含了目的要求,知识要点,重点和难点分析,典型例题等内容,欢迎下载使用。

    高中数学人教版新课标A选修4-1三 相似三角形的判定及性质教学设计:

    这是一份高中数学人教版新课标A选修4-1三 相似三角形的判定及性质教学设计,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map