中考数学《一轮专题讲义》(41专题)第11讲 一元一次不等式(组)程(解析版)学案
展开
这是一份中考数学《一轮专题讲义》(41专题)第11讲 一元一次不等式(组)程(解析版)学案,共18页。学案主要包含了不等式的概念,不等式基本性质,一元一次不等式,一元一次不等式组等内容,欢迎下载使用。
中考数学一轮复习讲义
考点十一: 一元一次不等式(组)
聚焦考点☆温习理解
一、不等式的概念
1、不等式
用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集
对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
3、用数轴表示不等式的方法
二、不等式基本性质
1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
三、一元一次不等式
1、一元一次不等式的概念
一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、一元一次不等式的解法
解一元一次不等式的一般步骤:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
四、一元一次不等式组
1、一元一次不等式组的概念
几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
求不等式组的解集的过程,叫做解不等式组。
当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
2、一元一次不等式组的解法
(1)分别求出不等式组中各个不等式的解集
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
名师点睛☆典例分类
考点典例一、不等式的性质
【例1】(2019·广安)若,下列不等式不一定成立的是
A. B. C. D.
【答案】D
【解析】A、不等式的两边都加3,不等号的方向不变,故A错误;
B、不等式的两边都乘以-3,不等号的方向改变,故B错误;
C、不等式的两边都除以3,不等号的方向不变,故C错误;
D、如,故D正确,故选D.
【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.
不等式性质1:不等式两边同时加上(或减去)同一个数,不等号方向不变;
不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变;
不等式性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变.
【举一反三】
1.下列说法不一定成立的是( )
A.若,则 B.若,则
C.若,则 D.若,则
【答案】C.[来源:学科网ZXXK]
【解析】
试题分析:A.在不等式的两边同时加上c,不等式仍成立,即,故本选项错误;
B.在不等式的两边同时减去c,不等式仍成立,即,故本选项错误;
C.当c=0时,若,则不等式不成立,故本选项正确;
D.在不等式的两边同时除以不为0的,该不等式仍成立,即,故本选项错误.
故选C.
考点:不等式的性质.
2.(2019•桂林)如果a>b,cb B.a+c>b-c
C.ac-1>bc-1 D.a(c-1)
相关学案
这是一份中考数学《一轮专题讲义》(41专题)第11讲 一元一次不等式(组)程(原卷版)学案,共8页。学案主要包含了不等式的概念,不等式基本性质,一元一次不等式,一元一次不等式组等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第10讲 方程(组)的应用(原卷版)学案,共8页。学案主要包含了二元一次方程的应用,二元一次方程组的应用,分式方程的应用,一元二次方程的应用等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第10讲 方程(组)的应用(解析版)学案,共19页。学案主要包含了二元一次方程的应用,二元一次方程组的应用,分式方程的应用,一元二次方程的应用等内容,欢迎下载使用。