中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(解析版)学案
展开聚焦考点☆温习理解
1.统计图是表示统计数据的图形,是数据及其之间关系的直观表现
常见的统计图有:
(1)条形统计图:条形统计图就是用长方形的高来表示数据的图形;
(2)折线统计图:用几条线段连成的折线来表示数据的图形;
(3)扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比大小,这样的统计图叫扇形统计图;
(4)频数分布直方图、频数折线图:能显示各组频数分布的情况,显示各组之间频数的差别.
2.频数分布直方图
(1)把每个对象出现的次数叫做频数
(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.
(3)频数分布表、频数分布直方图都能直观、清楚地反映数据在各个小范围内的分布情况
(4)频数分布直方图的绘制步骤是:
①计算最大值与最小值的差(即:极差);
②决定组距与组数,一般将组数分为5~12组;
③确定分点,常使分点比数据多一位小数,且把第一组的起点稍微减小一点;
④列频数分布表;
⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.
名师点睛☆典例分类
考点典例一、条形统计图与折线统计图
【例1】(2019湖南衡阳)进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:
(1)这次学校抽查的学生人数是 ;
(2)将条形统计图补充完整;
(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人?
【答案】(1)40;(2)见解析;(3)100.
【解析】(1)这次学校抽查的学生人数是12÷30%=40(人),
故答案为:40人;
(2)C项目的人数为40﹣12﹣14﹣4=10(人)
条形统计图补充为:
(3)估计全校报名军事竞技的学生有1000×=100(人).
【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.
【举一反三】
1. 已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:
①学校数量2007年~2012年比2001~2006年更稳定;
②在校学生人数有两次连续下降,两次连续增长的变化过程;
③2009年的大于1000;
④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.
其中,正确的结论是( )
A.①②③④B.①②③C.①②D.③④
【答案】B.
试题解析:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,故结论①正确;
②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,故结论②正确;
③由统计图可知,2009年的在校学生445192人,学校数量417所,
所以2009年的>1000,故结论③正确;
④∵2009~2010年学校数量增长率为≈-2.16%,
2010~2011年学校数量增长率为≈0.245%,
2011~2012年学校数量增长率为≈1.47%,
1.47%>0.245%>-2.16%,
∴2009~2012年,相邻两年的学校数量增长最快的是2011~2012年;
∵2009~2010年在校学生人数增长率为≈1.96%,
2010~2011年在校学生人数增长率为≈2.510%,
2011~2012年在校学生人数增长率为≈1.574%,
2.510%>1.96%>1.574%,
∴2009~2012年,相邻两年的在校学生人数增长最快的是2010~2011年,
故结论④错误.
综上所述,正确的结论是:①②③.
故选:B.
考点:折线统计图;条形统计图.
考点典例二、扇形统计图
【例2】(2019湖北宜昌8分)某校在参加了宜昌市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:
小明:“选科学素养和人文素养的同学分别为16人,12人.”
小颖:“选数学素养的同学比选阅读素养的同学少4人.”
小雯:“选科学素养的同学占样本总数的20%.”
(1)这次抽样调查了多少名学生?
(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?
(3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比;
(4)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?
【分析】(1)用选科学素养的人数除以它所占的百分比得到调查的总人数;
(2)设样本中选数学素养的同学数为x人,则选阅读素养的同学数为(x+4)人,列方程x+x+4+16+12=80,然后解方程即可;
(3)分别计算出选数学素养、选阅读素养和选人文素养的百分比,然后补全扇形统计图;
(4)用400乘以样本中选择“阅读素养”的学生所占的百分比即可.
【解答】解:(1)16÷20%=80,
所以这次抽样调查了80名学生;
(2)设样本中选数学素养的同学数为x人,则选阅读素养的同学数为(x+4)人,
x+x+4+16+12=80,解得x=24,
则x+4=28,
所以本总数中,选“阅读素养”的学生数为28人,选“数学素养”的学生数为24人;
(3)选数学素养的学生数所占的百分比为×100%=30%;
选阅读素养的学生数所占的百分比为×100%=35%;
选人文素养的学生数所占的百分比为×100%=15%;
如图,
(4)400×35%=140,
所以估计全年级选择“阅读素养”的学生有140人.
【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.
【举一反三】
(2018江苏南京中考模拟)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
【答案】(1)40人;(2)补图见解析;72°;(3)280人.
【解析】
试题分析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去A景点的人数所占的百分比即可.
试题解析:(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“最想去景点B“的学生人数为280人.
考点:条形统计图;用样本估计总体;扇形统计图.
考点典例三、频数分布直方图
【例3】(2019•湖北省咸宁市•8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:
七、八年级学生一分钟跳绳成绩分析表
七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:
100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119
根据以上信息,回答下列问题:
(1)表中a= 118 ;
(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 甲 (填“甲”或“乙”),理由是 甲的成绩122超过中位数118,乙的成绩125低于其中位数126 .
(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?
【分析】(1)根据中位数,结合条形统计图及所给数据求解可得;
(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;
(3)利用样本估计总体思想求解可得.
【解答】解:(1)∵七年级50名学生成绩的中位数是第25.26个数据的平均数,而第25.26个数据分别是117.119,
∴中位数a==118,
故答案为:118;
(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,
理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,
故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.
(3)估计一分钟跳绳不低于116次的有500×=270(人).
【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.
【举一反三】
(2019•河南)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在70≤x<80这一组的是:
70 72 74 75 76 76 77 77 77 78 79
c.七、八年级成绩的平均数、中位数如下:
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上(含80分)的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
【答案】见解析。
【解析】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.
(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,
故答案为:23;
(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,
∴m==77.5,
故答案为:77.5;
(3)甲学生在该年级的排名更靠前,
∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,
八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,
∴甲学生在该年级的排名更靠前.
(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).
考点典例四、利用统计量解决实际问题
【例4】(2019云南8分)
某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部
门统计了这15人某月的销售量,如下表所示:
(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;
(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.
温馨提示:
确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力。
【解析】
(1)这15名销售人员该月销售量数据的
平均数为278,中位数为180,众数为90…………………………………………………6分
(2)解:中位数最适合作为月销售目标.理由如下:
在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.
所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.
【举一反三】
(2018山东菏泽中考模拟)随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中 的值,并补全条形统计图;
(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?
并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.
【答案】(1)50人;(2)0.2;10;20.补图见解析;(3)400人.
【解析】
试题分析:利用公式:,可得,被调查的学生50人;利用公式:,频数=总数×频率,m、n、p的值;手机购物或玩游戏的频率=0.1+0.4=0.5,再利用公式频数=总数×频率,就可以估计全校学生中利用手机购物或玩游戏的共有400人.
试题解析:(1)从C可以看出:5÷0.1=50(人)
答:这次被美术家人学生有50人;
(2)m==0.2,n=0.2×50=10,p=0.4×50=20.
补全图形如图所示:
(3)800×(0.1+0.4)=800×0.5=400(人)
建议:中学生使用手机要多用于学习.
考点:频数、频率、统计图实际应用
课时作业☆能力提升
1. (2017湖南株洲第7题)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为( )
A.9:00﹣10:00B.10:00﹣11:00C.14:00﹣15:00D.15:00﹣16:00
【答案】B.
【解析】
试题分析:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,
故选:B.
考点:统计表.
2. (2018湖南常德中考模拟)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
【答案】B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选B.
考点:中位数;加权平均数.
3. (2018江西中考模拟)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )
A. B. C. D.
【答案】C
【解析】
试题分析:由题意可得,
第一小组对应的圆心角度数是: ×360°=72°,
故选C.
考点:1.扇形统计图;2.条形统计图.
4. (2018河南中考模拟)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )
A.2010年至2014年间工业生产总值逐年增加
B.2014年的工业生产总值比前一年增加了40亿元
C.2012年与2013年每一年与前一年比,其增长额相同
D.从2011年至2014年,每一年与前一年比,2014年的增长率最大
【答案】D
考点:折线统计图.
5. (2018湖南常德一模)彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷 千克.
【答案】24000.
【解析】
试题分析:根据题意得:200÷5×600=24000(千克).故答案为:24000.
考点:用样本估计总体.
6. (2017上海第14题)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.
【答案】120
【解析】
试题分析:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),
则该企业第一季度月产值的平均值是×360=120(万元).
考点:扇形统计图
7. (2018重庆A卷第16题)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 小时.
【答案】11.
【解析】
试题解析:由统计图可知,
一共有:6+9+10+8+7=40(人),
∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,
∴该班这些学生一周锻炼时间的中位数是11.
考点:1.中位数;2.平均数.
8. (2017浙江嘉兴第14题)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是 .
【答案】3球.
【解析】
试题解析:∵由图可知,3球所占的比例最大,
∴投进球数的众数是3球.
考点:1.扇形统计图;2.众数.
9. (2018年安徽省安顺中考数学监测试卷)为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:
(1)求八年一班共有多少人;
(2)补全折线统计图;
(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________;
(4)若等级A为优秀,求该班的优秀率.
【答案】(1)60;(2)补图见解析;(3)108°;(4)5%.
解:(1)30÷50%=60(人)
∴八年级一共有60人。
(2)等级为“C”的人数为60×15%=9(人).
等级为“D”的人数为60−3−30−9=18(人).
补全折线统计图如下。
(3)等极为“D”的部分所占圆心角的度数为 ×360°=108°,
故答案为:108°.
(4)该班的优秀率×100%=5%.
∴该班的优秀率为5%.
点睛:本题考查统计相关知识.利用拆线图与扇形图得出相关信息是解题的关键.
10. (2018年湖北省武汉市晒湖中学数学中考模拟试题(一))某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
(1)①在扇形图中,C部门所对应的圆心角的度数为
②在统计表中,b= ,c=
(2)求这个公司平均每人所创年利润.
【答案】(1)①108°;②b=9,c=6;(2)7.6万元
②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,
各部门的员工总人数为:5÷25%=20(人),
∴b=20×45%=9,c=20×30%=6,
故答案为:108°,9,6;
(2)这个公司平均每人所创年利润为: (万元).
11. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
【来源】天津市2018年中考数学试题
【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.
【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅲ)∵在所抽取的样本中,质量为的数量占.
∴由样本数据,估计这2500只鸡中,质量为的数量约占.
有.
∴这2500只鸡中,质量为的约有200只。
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
13.(辽宁省抚顺县2018届九年级上学期期末教学质量检测数学试题)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
【答案】(1)50;(2)16;(3)56(4)见解析
(3)由(1)中求得的被抽查学生的总数及获得D等级的有4人可计算出获得D等级的人数所占的百分比,即可求得800人中可能获得D等级的人数;
(4)设两名男生为A1、A2,两名女生为B1、B2,画出树形图分析即可求得所求概率;
试题解析:
(1)10÷20%=50(名)
答:本次抽样调查共抽取了50名学生.
(2)50-10-20-4=16(名)
答:测试结果为C等级的学生有16名.
图形统计图补充完整如下图所示:
(3)700×=56(名)
答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
(4)画树状图法:设体能为A等级的两名男生分别为,体能为A等级的两名女生分别为,,画树状图如下:
由树状图可知,共有12 种结果,每种结果出现的可能性相同,而抽取的两人都是男生的结果有两种:(),(,), ∴P(抽取的两人是男生)=.学&科*网
14. (2018年湖北省武汉市晒湖中学数学中考模拟试题(一))某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
(1)①在扇形图中,C部门所对应的圆心角的度数为
②在统计表中,b= ,c=
(2)求这个公司平均每人所创年利润.
【答案】(1)①108°;②b=9,c=6;(2)7.6万元
②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,
各部门的员工总人数为:5÷25%=20(人),
∴b=20×45%=9,c=20×30%=6,
故答案为:108°,9,6;
(2)这个公司平均每人所创年利润为: (万元).
年级
平均数
中位数
众数
七
116
a
115
八
119
126
117
年级
平均数
中位数
七
76.9
m
八
79.2
79.5
月销售量/件数
1770
480
220
180
120
90
人数
1
1
3
3
3
4
9:00﹣10:00
10:00﹣11:00
14:00﹣15:00
15:00﹣16:00
进馆人数
50
24
55
32
出馆人数
30
65
28
45
中考数学《一轮专题讲义》(41专题)第10讲 方程(组)的应用(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第10讲 方程(组)的应用(解析版)学案,共19页。学案主要包含了二元一次方程的应用,二元一次方程组的应用,分式方程的应用,一元二次方程的应用等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第17讲 统计初步(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第17讲 统计初步(解析版)学案,共20页。学案主要包含了平均数,统计学中的几个基本概念,众数,方差等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第16讲 函数的应用(解析版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第16讲 函数的应用(解析版)学案,共25页。学案主要包含了一次函数相关应用题,反比例函数相关应用题,二次函数相关应用题等内容,欢迎下载使用。