还剩4页未读,
继续阅读
《直线与圆的方程的应用》课件1(8张PPT)(北师大版必修2)学案
展开
1§4.2.3直线与圆的方程的应用 2例4、图中是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01)思考:(用坐标法) 1.圆心和半径能直接求出吗? 2.怎样求出圆的方程? 3.怎样求出支柱A2P2的长度?3E例5、已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半.(a,0)(0,b)(c,0)(0,d)4练习:(6,0)(2,0)(0,0)5用坐标法解决平面几何问题的步骤:第一步:建立适当的坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.6练习1、求直线l: 2x-y-2=0被圆C: (x-3)2+y2=0所截得的弦长.2、某圆拱桥的水面跨度20 m,拱高4 m. 现有一船,宽10 m,水面以上高3 m,这条船能否从桥下通过?7练习4、点M在圆心为C1的方程:x2+y2+6x-2y+1=0,点N在圆心为C2的方程x2+y2+2x+4y+1=0,求|MN|的最大值.8解:建立如图所示的坐标系,设圆心坐标是(0,b),圆的半径是r ,则圆的方程是x2+(y-b)2=r2 .答:支柱A2P2的长度约为3.86m.
相关资料
更多