数学必修22.3.2圆的一般方程教案
展开圆的一般方程
教学目标
(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件.
(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.
(3)理解并能初步应用圆系的知识去处理问题.
教学重点和难点
重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.
难点:圆系的理解和应用.
教学过程设计
(一)教师讲授:
请同学们看出圆的标准方程:
(x-a)2+(y-b)2=r2,圆心(a,b),半径r.
把圆的标准方程展开,并整理:
x2+y2-2ax-2by+a2+b2-r2=0.
我们把它看成下面的形式:
x2+y2+Dx+Ey+F=0 ①
这个方程是圆的方程.
反过来给出一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线是圆.
②
(配方过程由学生去完成)这个方程是不是表示圆?
(1)当D2+E2-4F>0时,方程②表示
(2)当D2+E2-4F=0时,方程②表示
(3)当D2+E2-4F<0时,方程②不表示任何图形
∴当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0.
做圆的一般方程.
现在我们来看圆的一般方程的特点:(启发学生归纳)
(1)①x2和y2的系数相同,不等于0.
②没有xy这样的二次项.
同学们不难发现,x2和y2的系数相同,不等于0.且没有xy这样的二次项,是方程x2+y2+Dx+Ey+F=0表示圆的必要条件.但不是充分条件.
(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.
(二)研究问题1,求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这个圆的半径和圆心坐标.
[解法一]设所求圆的方程是x2+y2+Dx+Ey+F=0.
把已知三点的坐标代入,得三个方程,解这三个方程组成的方程组
∴所求圆的方程为x2+y2-8x+6y=0.
[解法二]先求OM1和OM2的中垂线:
y-1=(-2)(x-2) 2x+y=5
∴所求圆的方程为,(x-4)2+(y+3)2=25.
[分析]设动点M(x,y),|MO|、|MA|都可表示出.
解 设曲线上的动点为M(x,y).
化简得 x2+y2+2x-3=0
配方 (x+1)2+y2=4.
∴所求的轨迹是以C(-1,0)为圆心,2为半径的圆.
研究问题3,自P0(x0,y0)作圆x2+y2=r2的两切线,切点分别为P1、P2,求证:P1P2所在直线的方程为x0x+y0y=r2.
[分析]自P0(x0,y0)作图x2+y2=r2的两切线,切点分别为P1、P2如具体去求P1、P2的坐标,则运动量是非常大的.为此我们要研究较简单的办法.
P0P1、P0P2是圆O的两条切线,∠OP1P0=∠OP2P0=90°,则O、P1、P0、P2四点共圆,P1、P2为两个圆的交点,为此我们从两个圆的交点入手.
即 x2+y2-x0x-y0y=0.
把(2)代入(1):x0x+y0y=r2.
∴P1P2所在直线的方程为x0x+y0y=r2.
这里同学们可能有点不太明白,为什么由方程(1)和(2)变出的关系式x0x+y0y=r2就是过两圆交点的直线.
请同学们回忆一下,我们在前面研究两条曲线交点的有关问题时,研究过这样一个定理.(课本复习题七,24题)“两条曲线的方程是f1(x,y)=0,和f2(x,y)=0,它们的交点是P(x0,y0).求证:方程f1(x,y)+λf2(x,y)=0的曲线也经过点P,这里λ是任意实数”.
根据这一定理,(x2+y2-x0x-y0y)+λ(x2+y2-r2)=0.表示过两圆交点的曲线,为了消去x2,y2项,我们取λ=-1,得曲线方程,x0x+y0y=r2,实际上是直线x0x+y0y=r2.就是说,直线x0x+y0y=r2过两圆的交点.
通过这个题,我们有下面一般的结论:
如果圆C1:x2+y2+D1x+E1y+F1=0,和圆C2:x2+y2+D2x+E2y+F2=0相交.
(1)当λ≠-1时,方程(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0表示过圆C1与C2交点的圆.
(2)当λ=-1时,方程(D1-D2)x+(E1-E2)y+(F1-F2)=0表示过圆C1和C2交点的直线.
这点的证明留给同学们课后去思考,而这个结论同学们今后在解题中将会得到应用.应当注意的是:
方程(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0中由于λ取值的不同,得到不同的圆,这无数个圆形成一个集合,这个集合我们把它叫做一个圆系.这个圆系就是经过两圆交点的所有圆的集合.
(三)学生课堂练习
1.课本练习题1
(1)点(0,0).
2.课本练习题2.
(1)圆心为(3,0),半径为3;(2)圆心为(0,-b),半径为|b|.
3.课本练习题3.
(四)作业
习题7.7 5,6,7,8
高中数学人教版新课标B必修22.3.2圆的一般方程教学设计: 这是一份高中数学人教版新课标B必修22.3.2圆的一般方程教学设计,共2页。教案主要包含了【学习目标】,【自学内容和要求及自学过程】,作业等内容,欢迎下载使用。
高中数学人教版新课标B必修22.3.2圆的一般方程教学设计: 这是一份高中数学人教版新课标B必修22.3.2圆的一般方程教学设计,共4页。
高中数学人教版新课标B必修22.3.2圆的一般方程教案: 这是一份高中数学人教版新课标B必修22.3.2圆的一般方程教案,共4页。教案主要包含了问题情境,学生活动,建构数学,数学运用,回顾小结,课外作业等内容,欢迎下载使用。