苏教版必修13.2.2 对数函数教案设计
展开对数函数的运用
教学目标:
使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.
教学重点:
复合函数单调性、奇偶性的讨论方法.
教学难点:
复合函数单调性、奇偶性的讨论方法.
教学过程:
[例1]设loga<1,则实数a的取值范围是
A.0<a< B. <a<1
C.0<a<或a>1 D.a>
解:由loga<1=logaa得
(1)当0<a<1时,由y=logax是减函数,得:0<a<
(2)当a>1时,由y=logax是增函数,得:a>,∴a>1
综合(1)(2)得:0<a<或a>1 答案:C
[例2]三个数60.7,0.76,log0.76的大小顺序是
A.0.76<log0.76<60.7 B.0.76<60.7<log0.76
C.log0.76<60.7<0.76 D.log0.76<0.76<60.7
解:由于60.7>1,0<0.76<1,log0.76<0 答案:D
[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小
解法一:作差法
|loga(1-x)|-|loga(1+x)|=| |-| |
=(|lg(1-x)|-|lg(1+x)|)
∵0<x<1,∴0<1-x<1<1+x
∴上式=- [(lg(1-x)+lg(1+x)]=-·lg(1-x2)
由0<x<1,得lg(1-x2)<0,∴-·lg(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|
解法二:作商法
=|log(1-x)(1+x)|
∵0<x<1 ∴0<1-x<1+x
∴|log(1-x)(1+x)|=-log (1-x)(1+x)=log(1-x)
由0<x<1 ∴1+x>1,0<1-x2<1
∴0<(1-x)(1+x)<1 ∴>1-x>0
∴0<log(1-x) <log(1-x)(1-x)=1
∴|loga(1-x)|>|loga(1+x)|
解法三:平方后比较大小
∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]
=loga(1-x2)·loga=·lg(1-x2)·lg
∵0<x<1,∴0<1-x2<1,0<<1
∴lg(1-x2)<0,lg<0
∴loga2(1-x)>loga2(1+x)
即|loga(1-x)|>|loga(1+x)|
解法四:分类讨论去掉绝对值
当a>1时,|loga(1-x)|-|loga(1+x)|
=-loga(1-x)-loga(1+x)=-loga(1-x2)
∵0<1-x<1<1+x,∴0<1-x2<1
∴loga(1-x2)<0, ∴-loga(1-x2)>0
当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0
∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0
∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|
[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.
解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.
当a2-1≠0时,其充要条件是:
解得a<-1或a>
又a=-1,f(x)=0满足题意,a=1不合题意.
所以a的取值范围是:(-∞,-1]∪(,+∞)
[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小
解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)
f(x)-g(x)=1+logx3-2logx2=logx(x).
①当x>1时,若x>1,则x>,这时f(x)>g(x).
若x<1,则1<x<,这时f(x)<g(x)
②当0<x<1时,0<x<1,logxx>0,这时f(x)>g(x)
故由(1)、(2)可知:当x∈(0,1)∪(,+∞)时,f(x)>g(x)
当x∈(1,)时,f(x)<g(x)
[例6]解方程:2(9x-1-5)=[4(3x-1-2)]
解:原方程可化为
(9x-1-5)=[4(3x-1-2)]
∴9x-1-5=4(3x-1-2) 即9x-1-4·3x-1+3=0
∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3
∴x=1或x=2 经检验x=1是增根
∴x=2是原方程的根.
[例7]解方程log2(2-x-1)(2-x+1-2)=-2
解:原方程可化为:
log2(2-x-1)(-1)log2[2(2-x-1)]=-2
即:log2(2-x-1)[log2(2-x-1)+1]=2
令t=log2(2-x-1),则t2+t-2=0
解之得t=-2或t=1
∴log2(2-x-1)=-2或log2(2-x-1)=1
解之得:x=-log2或x=-log23
高中数学苏教版必修13.2.2 对数函数教案设计: 这是一份高中数学苏教版必修13.2.2 对数函数教案设计,共2页。教案主要包含了问题情境,学生活动,数学运用,要点归纳与方法小结,作业等内容,欢迎下载使用。
必修13.2.2 对数函数教学设计: 这是一份必修13.2.2 对数函数教学设计,共7页。教案主要包含了八班等内容,欢迎下载使用。
高中数学苏教版必修13.2.2 对数函数教学设计: 这是一份高中数学苏教版必修13.2.2 对数函数教学设计,共2页。教案主要包含了情境创设,学生探究,数学建构,数学应用,作业等内容,欢迎下载使用。