初中数学6.5 相似三角形的性质教学设计
展开6.5相似三角形的性质
教学目标
1、运用类比的思想方法,通过实践探索得出相似三角形,对应线段(高、中线、角平分线)的比等于相似比;
2、会运用相似三角形对应高的比与相似比的性质解决有关问题;
3、经历“操作—观察—探索—说理”的数学活动过程,发展合情推理和有条理的表达能力.
教学难点
1、探索得出相似三角形,对应线段的比等于相似比;
2、利用相似三角形对应高的比与相似比的性质解决问题.
教学过程
一、情境创设:
全等三角形的对应边上的高相等。相似三角形的对应边上的高又有怎样的关系呢?
二、探索活动:
1、如图,△ABC∽△A′B′C′,相比为k,AD与A′D′分别是△ABC和△A′B′C′的高,说明:AD/A′D′=k
由此引出:相似三角形对应高的比等于相似比
2、全等三角形的对应线段(中线、角平分线)有何关系?那么相似三角形的对应线段(中线、角平分线)又有怎样的关系呢?
3、小结相似三角形对应线段的关系。
三、例题教学
1、如图:已知梯形上下底边的长分别为36和60,高为32,这个梯形两腰的延长线的交点到两底的距离分别是多少?
2、△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件EFGH,使正方形的一边HG在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是什么?
变题1:若四边形EFGH为矩形,且EF:EH=2:1,求矩形EFGH的面积。
变题2:已知:直角三角形的铁片ABC的两条直角边BC、AC的长分别为3和
3、如图所示,分别采用(1)(2)两种方法,剪出一块正方形铁片,为使剪去正方形铁片后剩下的边角料较少,试比较哪种剪法较为合理,并说明理由。
四、当堂练习:
1、如图,DE∥FG∥BC,且DE、FG把△ABC的面积三等分,若BC=12,则FG的长是( ).
A.8 B.6 C. D.
2、如图,正方形ABCD的边BC在等腰直角三角形PQR的底边QR上,其余两个顶点A、D分别在PQ、PR上,则PA∶AQ=( ).
A.1∶ B.1∶2 C.1∶3 D.2∶3
4、如图,在△ABC中,AB=5,BC=4,AC=3,PQ∥AB,P点在AC上(与点A、C不重合),点Q在B、C上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)在AB上是否存在点M,使得△PQM是等腰直角三角形?若存在,求出PQ的长。
8、如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(点 )20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?
五、小结思考:
六、教学反思:
初中数学苏科版七年级上册6.2 角教案: 这是一份初中数学苏科版七年级上册6.2 角教案,共2页。教案主要包含了学习目标,学习难点,教学过程等内容,欢迎下载使用。
初中第6章 平面图形的认识(一)6.5 垂直教学设计: 这是一份初中第6章 平面图形的认识(一)6.5 垂直教学设计,共4页。
初中第6章 平面图形的认识(一)6.5 垂直教学设计: 这是一份初中第6章 平面图形的认识(一)6.5 垂直教学设计,共3页。