2021年河北省唐山市遵化市中考数学一模试卷
展开2021年河北省唐山市遵化市中考数学一模试卷
一、选择题(本大题有16个小题,共42分。1-10每小题3分,11-16每小题3分。在每小题给出的四个选项中,只有一项符合题目要求)。
1.2019的相反数是( )
A. B.﹣ C.|2019| D.﹣2019
2.下列各式中,计算正确的是( )
A.8a﹣3b=5ab B.(a2)3=a5 C.a8÷a4=a2 D.a2•a=a3
3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
4.下列因式分解正确的是( )
A.x2﹣x=x(x+1) B.a2﹣3a﹣4=(a+4)(a﹣1)
C.a2+2ab﹣b2=(a﹣b)2 D.x2﹣y2=(x+y)(x﹣y)
5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是( )
A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.= D.=
6.若a:b=3:4,且a+b=14,则2a﹣b的值是( )
A.4 B.2 C.20 D.14
7.解分式方程=﹣2时,去分母变形正确的是( )
A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x) D.1﹣x=﹣1﹣2(x﹣2)
8.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是( )
A.m<1 B.m≤1 C.m>1 D.m≥1
9.语句“x的与x的和不超过5”可以表示为( )
A.+x≤5 B.+x≥5 C.≤5 D.+x=5
10.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为( )
A.3 B. C.3 D.3
11.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )
A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
12.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为( )
A.20° B.35° C.40° D.70°
13.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4 B.2 C.6 D.2
14.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )
A.120° B.108° C.72° D.36°
15.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是( )
A.(﹣2,l ) B.(﹣2,﹣l ) C.(﹣1,﹣2 ) D.(﹣1,2 )
16.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A.﹣ B.+ C.2﹣π D.4﹣
二、填空题(本大题有3个小题,共9分。每小题3分,把答案写在题中横线上)
17.计算﹣的结果是 .
18.如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为 度.
19.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .
三、解答题(本大题有7个小题,共69分,解答应写出必要的文字说明、证明过程或演算步骤)。
20.先化简,再求值(﹣)÷,其中a满足a2+3a﹣2=0.
21.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是矩形.
22.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.
(1)求函数y=和y=kx+b的解析式;
(2)结合图象直接写出不等式组0<<kx+b的解集.
23.“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“很了解”部分所对应扇形的圆心角为 ;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.
24.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.
(1)求证:BD2=AD•CD;
(2)若CD=6,AD=8,求MN的长.
25.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.
(1)求证:AC是⊙D的切线;
(2)若CE=2,求⊙D的半径.
26.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含a的式子表示);
(2)求抛物线的对称轴;
(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.
参考答案
一、选择题(本大题有16个小题,共42分。1-10每小题3分,11-16每小题3分。在每小题给出的四个选项中,只有一项符合题目要求)。
1.2019的相反数是( )
A. B.﹣ C.|2019| D.﹣2019
解:2019的相反数是﹣2019,
故选:D.
2.下列各式中,计算正确的是( )
A.8a﹣3b=5ab B.(a2)3=a5 C.a8÷a4=a2 D.a2•a=a3
解:A、8a与3b不是同类项,故不能合并,故选项A不合题意;
B、(a2)3=a6,故选项B不合题意;
C、a8÷a4=a4,故选项C不符合题意;
D、a2•a=a3,故选项D符合题意.
故选:D.
3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,
∴当小明到达该路口时,遇到绿灯的概率P==,
故选:D.
4.下列因式分解正确的是( )
A.x2﹣x=x(x+1) B.a2﹣3a﹣4=(a+4)(a﹣1)
C.a2+2ab﹣b2=(a﹣b)2 D.x2﹣y2=(x+y)(x﹣y)
解:A、原式=x(x﹣1),错误;
B、原式=(a﹣4)(a+1),错误;
C、a2+2ab﹣b2,不能分解因式,错误;
D、原式=(x+y)(x﹣y),正确.
故选:D.
5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是( )
A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.= D.=
解:设合伙人数为x人,
依题意,得:5x+45=7x+3.
故选:B.
6.若a:b=3:4,且a+b=14,则2a﹣b的值是( )
A.4 B.2 C.20 D.14
解:由a:b=3:4知3b=4a,
所以b=.
所以由a+b=14得到:a+=14,
解得a=6.
所以b=8.
所以2a﹣b=2×6﹣8=4.
故选:A.
7.解分式方程=﹣2时,去分母变形正确的是( )
A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x) D.1﹣x=﹣1﹣2(x﹣2)
解:去分母得:1﹣x=﹣1﹣2(x﹣2),
故选:D.
8.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是( )
A.m<1 B.m≤1 C.m>1 D.m≥1
解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,
∴Δ=(﹣2)2﹣4m≥0,
解得:m≤1.
故选:B.
9.语句“x的与x的和不超过5”可以表示为( )
A.+x≤5 B.+x≥5 C.≤5 D.+x=5
解:“x的与x的和不超过5”用不等式表示为x+x≤5.
故选:A.
10.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为( )
A.3 B. C.3 D.3
解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.
设∠BAB′=n°.
∵=4π,
∴n=120,即∠BAB′=120°.
∵E为弧BB′中点,
∴∠AFB=90°,∠BAF=60°,
∴BF=AB•sin∠BAF=6×=3,
∴最短路线长为3.
故选:D.
11.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是( )
A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
解:∵四边形OABC是正方形,且OA=1,
∴A(0,1),
∵将正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,
∴A1(,),A2(1,0),A3(,﹣),…,
发现是8次一循环,所以2019÷8=252…余3,
∴点A2019的坐标为(,﹣)
故选:A.
12.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为( )
A.20° B.35° C.40° D.70°
解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,
∴AC=AB,
∴∠CBA=∠BCA=70°,
∵l1∥l2,
∴∠CBA+∠BCA+∠1=180°,
∴∠1=180°﹣70°﹣70°=40°,
故选:C.
13.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4 B.2 C.6 D.2
解:∵△ADE绕点A顺时针旋转90°到△ABF的位置.
∴四边形AECF的面积等于正方形ABCD的面积等于20,
∴AD=DC=2,
∵DE=2,
∴Rt△ADE中,AE==2
故选:D.
14.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )
A.120° B.108° C.72° D.36°
解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,
∴∠C=90°﹣∠B=54°.
∵AD是斜边BC上的中线,
∴AD=BD=CD,
∴∠BAD=∠B=36°,∠DAC=∠C=54°,
∴∠ADC=180°﹣∠DAC﹣∠C=72°.
∵将△ACD沿AD对折,使点C落在点F处,
∴∠ADF=∠ADC=72°,
∴∠BED=∠BAD+∠ADF=36°+72°=108°.
故选:B.
15.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是( )
A.(﹣2,l ) B.(﹣2,﹣l ) C.(﹣1,﹣2 ) D.(﹣1,2 )
解:∵A(m,n),C(﹣m,﹣n),
∴点A和点C关于原点对称,
∵四边形ABCD是平行四边形,
∴D和B关于原点对称,
∵B(2,﹣1),
∴点D的坐标是(﹣2,1).
故选:A.
16.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A.﹣ B.+ C.2﹣π D.4﹣
解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,
∴tanA=,
∴∠A=30°,
∴∠DOB=60°,
∵OD=AB=,
∴DE=,
∴阴影部分的面积是:=,
故选:A.
二、填空题(本大题有3个小题,共9分。每小题3分,把答案写在题中横线上)
17.计算﹣的结果是 0 .
解:原式=2﹣2=0.
故答案为0.
18.如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为 144 度.
解:∵五边形ABCDE是正五边形,
∴∠E=∠A==108°.
∵AB、DE与⊙O相切,
∴∠OBA=∠ODE=90°,
∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,
故答案为:144.
19.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 0 ,这2019个数的和是 2 .
解:由题意可得,
这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,
∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,
∵2019÷6=336…3,
∴这2019个数的和是:0×336+(0+1+1)=2,
故答案为:0,2.
三、解答题(本大题有7个小题,共69分,解答应写出必要的文字说明、证明过程或演算步骤)。
20.先化简,再求值(﹣)÷,其中a满足a2+3a﹣2=0.
解:(﹣)÷
=[]
=()
=
=
=,
∵a2+3a﹣2=0,
∴a2+3a=2,
∴原式==1.
21.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是矩形.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,AD∥BC,
∵AE⊥BC,CF⊥AD,
∴∠AEB=∠AEC=∠CFD=∠AFC=90°,
在△ABE和△CDF中,,
∴△ABE≌△CDF(AAS);
(2)证明:∵AD∥BC,
∴∠EAF=∠AEB=90°,
∴∠EAF=∠AEC=∠AFC=90°,
∴四边形AECF是矩形.
22.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.
(1)求函数y=和y=kx+b的解析式;
(2)结合图象直接写出不等式组0<<kx+b的解集.
解:(1)把点A(3,2)代入反比例函数y=,可得m=3×2=6,
∴反比例函数解析式为y=,
∵OB=4,
∴B(0,﹣4),
把点A(3,2),B(0,﹣4)代入一次函数y=kx+b,可得,
解得,
∴一次函数解析式为y=2x﹣4;
(2)不等式组0<<kx+b的解集为:x>3.
23.“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 60 人,扇形统计图中“很了解”部分所对应扇形的圆心角为 108° ;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.
解:(1)接受问卷调查的学生共有:18÷30%=60(人);
∴扇形统计图中“很了解”部分所对应扇形的圆心角为:360°×30%=108°;
故答案为:60,108°;
(2)60﹣3﹣9﹣18=30;
补全条形统计图得:
(3)根据题意得:900×=720(人),
则估计该中学学生中对扫黑除恶知识达到“很了解”和“基本了解”程度的总人数为720人.
24.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.
(1)求证:BD2=AD•CD;
(2)若CD=6,AD=8,求MN的长.
【解答】证明:(1)∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD
∴
∴BD2=AD•CD
(2)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=AD•CD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2﹣CD2=12
∴MC2=MB2+BC2=28
∴MC=2
∵BM∥CD
∴△MNB∽△CND
∴,且MC=2
∴MN=
25.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.
(1)求证:AC是⊙D的切线;
(2)若CE=2,求⊙D的半径.
【解答】(1)证明:连接AD,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵AD=BD,
∴∠BAD=∠B=30°,
∴∠ADC=60°,
∴∠DAC=180°﹣60°﹣30°=90°,
∴AC是⊙D的切线;
(2)解:连接AE,
∵AD=DE,∠ADE=60°,
∴△ADE是等边三角形,
∴AE=DE,∠AED=60°,
∴∠EAC=∠AED﹣∠C=30°,
∴∠EAC=∠C,
∴AE=CE=2,
∴⊙D的半径AD=2.
26.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含a的式子表示);
(2)求抛物线的对称轴;
(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.
解:(1)A(0,﹣)
点A向右平移2个单位长度,得到点B(2,﹣);
(2)A与B关于对称轴x=1对称,
∴抛物线对称轴x=1;
(3)∵对称轴x=1,
∴b=﹣2a,
∴y=ax2﹣2ax﹣,
①a>0时,
当x=2时,y=﹣<2,
当y=﹣时,x=0或x=2,
∴函数与PQ无交点;
②a<0时,
观察图象可知,﹣≤2,
解得,a≤﹣,
∴当a≤﹣时,抛物线与线段PQ恰有一个公共点.
2023年河北省唐山市遵化市中考数学毕业试卷(含解析): 这是一份2023年河北省唐山市遵化市中考数学毕业试卷(含解析),共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2023年河北省唐山市遵化市中考数学毕业试卷(含解析): 这是一份2023年河北省唐山市遵化市中考数学毕业试卷(含解析),共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2023年河北省唐山市遵化市中考数学二模试卷(含答案): 这是一份2023年河北省唐山市遵化市中考数学二模试卷(含答案),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。