数学九年级下册30.4 二次函数的应用教学课件ppt
展开1.会用二次函数知识解决实物中的抛物线形问题.(重点)2.建立恰当的直角坐标系将实际问题转化为数学问题.(难点)
我校九年级学生姚小鸣同学怀着激动的心情前往广州旅游.现在先让我们和姚小鸣一起逛逛美丽的广州吧!
例1 如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少米?
解:如图建立直角坐标系.则点A的坐标是(1.5,3.05), 篮球在最大高度时的位置为B(0,3.5). 以点C表示运动员投篮球的出手处.
设以y轴为对称轴的抛物线的解析式为 y=a(x-0)2+k ,即y=ax2+k.而点A,B在这条抛物线上,所以有
所以该抛物线的表达式为y=-0.2x2+3.5.当 x=-2.5时,y=2.25 .故该运动员出手时的高度为2.25m.
例2 如果要使运动员坐着船从圣火的拱形桥下面穿过入场,现已知拱形底座顶部离水面 2 m,水面宽 4 m,为了船能顺利通过,需要把水面下降 1 m,问此时水面宽度增加多少?
解:建立如图所示坐标系,
当水面下降1m时,水面的纵坐标为y=-3.
设二次函数解析式为y=ax2.
如果要使运动员坐着船从圣火的拱形底座下穿过入场,现已知拱形底座顶部离水面 2 m,水面宽 4 m,为了船能顺利通过,需要把水面下降 1 m,问此时水面宽度增加多少?
请同学们分别求出对应的函数解析式.
解决抛物线型实际问题的一般步骤
(1)根据题意建立适当的直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.
1.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在 s后落地.
3.公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O点恰在水面中心,OA=1.25米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下.为使水流较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流落不到池外?
解:如图建立坐标系,设抛物线顶点为B, 水流落水与x轴交于C点. 由题意可知,A( 0,1.25), B( 1,2.25 ),C(x0,0).
设抛物线为y=a(x-1)2+2.25 (a≠0),
点A坐标代入,得a=-1;
当y= 0时, x1= -0.5(舍去),x2=2.5
∴水池的半径至少要2.5米.
∴抛物线为y=-(x-1)2+2.25.
冀教版九年级下册30.4 二次函数的应用优质ppt课件: 这是一份冀教版九年级下册30.4 二次函数的应用优质ppt课件,共40页。PPT课件主要包含了课前导入,新课精讲,学以致用,课堂小结,情景导入,探索新知,典题精讲,小试牛刀等内容,欢迎下载使用。
冀教版第30章 二次函数30.4 二次函数的应用优秀ppt课件: 这是一份冀教版第30章 二次函数30.4 二次函数的应用优秀ppt课件,文件包含河北教育版数学九年级下·304二次函数的应用第3课时教学课件pptx、3043将二次函数问题转化为一元二次方程问题教案docx等2份课件配套教学资源,其中PPT共19页, 欢迎下载使用。
冀教版九年级下册第30章 二次函数30.4 二次函数的应用精品课件ppt: 这是一份冀教版九年级下册第30章 二次函数30.4 二次函数的应用精品课件ppt,文件包含河北教育版数学九年级下·304二次函数的应用第2课时教学课件pptx、3042实际问题中二次函数的最值问题教案docx、3042实际问题中二次函数的最值问题同步练习docx、3043将二次函数问题转化为一元二次方程问题同步练习docx等4份课件配套教学资源,其中PPT共20页, 欢迎下载使用。