山东省胶州市2020-2021学年高一上学期期中学业水平检测——数学试题含答案
展开2020-2021学年度第一学期期中学业水平检测
高一数学
本试卷4页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;
2.作答选择题时:选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;
3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数的定义域为集合,则( )
A. B. C. D.
2.下列函数中与函数是同一函数的是( )
A. B. C. D.
3.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“”作为等号使用,后来英国数学家哈利奥特首次使用“”和“”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,则下列结论正确的是( )
A. B. C. D.
4.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为( )(参考数据:)
A. B. C. D.
5.若关于的方程有两个正根,则的最小值为( )
A. B. C. D.
6.若函数是上的单调递增函数,则实数的取值范围是( )
A. B. C. D.
7.已知,则的大小关系为( )
A. B. C. D.
8.已知奇函数在上单调递减,若,则满足的的取值区间是( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。
9.下列说法正确的是( )
A.“对任意一个无理数,也是无理数”是真命题
B.“”是“”的充要条件
C.命题“”的否定是“”
D.若“”的必要不充分条件是“”,则实数的取值范围是
10.“双”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给与优惠:
(1)如果购物总额不超过元,则不给予优惠;
(2)如果购物总额超过元但不超过元,可以使用一张元优惠劵;
(3)如果购物总额超过元但不超过元,则按标价给予折优惠;
(4)如果购物总额超过元,其中元内的按第(3)条给予优惠,超过元的部分给予折优惠.
某人购买了部分商品,则下列说法正确的是( )
A.如果购物总额为元,则应付款为元
B.如果购物总额为元,则应付款为元
C.如果购物总额为元,则应付款为元
D.如果购物时一次性全部付款元,则购物总额为元
11.下列函数是偶函数且在上具有单调性的函数是( )
A.
B.
C.
D.
12.若,则下列选项成立的是( )
A. B.若,则
C.的最小值为 D.若,则
三、填空题:本题共4个小题,每小题5分,共20分。
13.已知集合,则集合的个数为 个.
14.已知关于的不等式的解集为,则 .
15. .
16.一位少年能将圆周率准确记忆到小数点后面位,更神奇的是提问小数点后面的位数时,这位少年都能准确地说出该数位上的数字.记圆周率小数点后第位上的数字为,则是的函数,设,.则(1)的值域为 ;(2)函数与函数的交点有 个.(第一空2分,第二空3分)
四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
已知全集,集合,集合.
(1)求;
(2)求;
(3)设集合,若,求实数的取值范围.
18.(12分)
已知函数的定义域为,当时,函数.
(1)若,利用定义研究在区间上的单调性;
(2)若是偶函数,求的解析式.
19.(12分)
某地区上年度电价为元,年用电量为,本年度计划将电价下降到元至元之间,而用户期望的电价为元.经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为).该地区的电力成本价为元.
(1)写出本年度电价下调后电力部门的收益(单位:元)关于实际电价(单位:元)的函数解析式;(收益实际电量(实际电价成本价))
(2)设,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长?
20.(12分)
已知函数,.
(1)若在上单调递增,求实数的取值区间;
(2)求关于的不等式的解集.
21.(12分)
已知函数是奇函数,.
(1)求的值,并求关于的不等式的解集;
(2)求函数图象的对称中心.
22.(12分)
已知函数.
(1)直接写出在上的单调区间(无需证明);
(2)求在上的最大值;
(3)设函数的定义域为,若存在区间,满足:,,使得,则称区间为的“区间”.已知(),若是函数的“区间”,求实数的最大值.
2020-2021学年度第一学期期中学业水平检测
高一数学参考答案
一、单项选择题:本题共8小题,每小题5分,共40分。
1—8: D A C B B C C A
二、多项选择题:本题共4小题,每小题5分,共20分。
9.CD; 10.ABD; 11. BC; 12.ABD;
三、填空题:本题共4个小题,每小题5分,共20分。
13. ; 14. ; 15. ; 16. (1);(2);
四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
解:(1)由题解得,,················································2分
所以·······························································3分
(2)所以或·························································5分
所以或·····························································6分
(3)因为,所以且····················································8分
所以的取值范围为:··················································10分
18.(12分)
解:(1)当时,······················································1分
设且·······························································2分
则·································································3分
························································5分
因为
所以,·····························································6分
所以, 即
所以在区间为单调递增函数··············································7分
(2)令,则,·······················································8分
所以······························································10分
因为是偶函数
所以······························································11分
所以函数在上的解析式为:
··································································12分
19.(12分)
解:(1),·························································4分
(2)由(1)知:时,·················································6分
依题意得:且························································9分
化简得····························································10分
解得······························································11分
所以当电价最低定为元时,
仍可保证电力部门的收益比上年至少增长··································12分
20.(12分)
解:(1)因为函数的图象为开口向上的抛物线,其对称轴为直线·················1分
由二次函数图象可知,的单调增区间为·····································2分
因为在上单调递增,所以···············································4分
所以,所以实数的取值区间是············································5分
(2)由得:·························································7分
或·································································8分
①当时,,不等式的解集是··············································9分
②当时,,不等式的解集是··············································10分
③当时,,不等式的解集是··············································11分
综上,①当时,不等式的解集是
②当时,不等式的解集是
③当时,不等式的解集是··········································12分
21.(12分)
解:(1)由题意得,函数的定义域为······································1分
因为函数是奇函数,所以,··············································2分
所以,解得
检验可知,当时,函数为奇函数,满足题意·································3分
由得,
所以, 即 ···························································5分
所以,解得,所以该不等式的解集为·······································6分
(2)由题知:·······················································9分
所以函数的图象是由的图象向上平移一个单位得到的··························10分
因为为奇函数,所以其图象的对称中心为··································11分
所以图象的对称中心是················································12分
22.(12分)
解:(1)在区间上单调递减·············································2分
在区间上单调递增··············································4分
(2)由题意知,······················································5分
①若,则在上单调递减,所以的最大值为····································6分
②若,则在上单调递减,在上单调递增
因为此时,所以的最大值为··············································8分
③若,则在上单调递减,在上单调递增
因为此时,所以的最大值为·············································10分
综上知:若,则的最大值为;
若,则的最大值为
(3)由(1)(2)知:
①当时,在上的值域为,在上的值域为,
因为,所以
满足,,使得
所以此时是的“区间”··················································11分
②当时,在上的值域为,在上的值域为,
因为当时,,
所以,使得,
即,,
所以此时不是的“区间”
所以实数的最大值为··················································12分
2023-2024学年山东省临沂市莒南县高一上学期期中学业质量检测数学试题含答案: 这是一份2023-2024学年山东省临沂市莒南县高一上学期期中学业质量检测数学试题含答案,共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年江苏省连云港市高一上学期期中学业水平质量检测数学含答案: 这是一份2022-2023学年江苏省连云港市高一上学期期中学业水平质量检测数学含答案,共8页。
山东省聊城市2021-2022学年高一上学期期中学业水平诊断——数学试题: 这是一份山东省聊城市2021-2022学年高一上学期期中学业水平诊断——数学试题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。