终身会员
搜索
    上传资料 赚现金

    2022届高考一轮复习第四章导数专练_有解问题(Word含答案)

    立即下载
    加入资料篮
    2022届高考一轮复习第四章导数专练_有解问题(Word含答案)第1页
    2022届高考一轮复习第四章导数专练_有解问题(Word含答案)第2页
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届高考一轮复习第四章导数专练_有解问题(Word含答案)

    展开

    这是一份2022届高考一轮复习第四章导数专练_有解问题(Word含答案),共5页。试卷主要包含了已知函数,已知函数,其中,设函数,已知函数在点,处的切线垂直于轴等内容,欢迎下载使用。
    第四章导数专练_有解问题1.已知函数1)当时,求曲线在点处的切线方程;2)若存在,使得不等式成立,求的取值范围.解:(1)当时,所以曲线在点处的切线方程为,即2)由题意知,存在,使得不等式成立,即存在,使得成立,时,,所以函数上单调递减,所以2成立,解得,所以时,令,解得;令,解得所以函数上单调递增,在上单调递减,,所以2,解得,与矛盾,舍去.时,,所以函数上单调递增,所以,不符合题意,舍去.综上所述,的取值范围为2.已知函数1)讨论的导函数的单调性;2)设,若存在两组,使得,求的取值范围.解:(1,则时,,故函数单调递减;时,令,解得上单调递减,在上单调递增;时,上单调递增,在上单调递减;时,上单调递增,在上单调递减;2,两式相乘有,于是,两边取对数有结合,知,设,则时,,函数单调递减,而,不满足题意舍去;时,由,知存在,使得上单调递增,在上单调递减,,则单增,而综上,实数的取值范围为3.已知函数,其中1)求证:若时,成立;2)若函数,且关于的方程有且只有两个不相等的实数根,求实数的取值范围.1)证明:,定义域为,则时,单调递减;当时,单调递增,成立.2)解:设,原问题转化为函数有且只有两个零点,时,恒成立,上单调递减,最多只有一个零点,与题意不符;时,令,则上单调递减,在上单调递增,有且只有两个零点,则,即故实数的取值范围为4.设函数)求函数的极值;)若关于的不等式上有解,求实数的取值范围.解:()函数的定义域是递增,递增,且1时,时,递减,在递增,1,无极大值.)由题意,关于的不等式上有解,等价于不等式在区间上有解,,则,则上单调递增,,故在区间上有解,由()知,时,,即有解,即,这与矛盾,综上:的取值范围是5.已知函数1)当时,求曲线在点1处的切线方程;2)若关于的不等式上有实数解,求实数的取值范围.解:(1的导数为时,可得曲线在点1处的切线斜率为0切点为,则切线的方程为2)关于的不等式上有实数解,即为上有实数解,等价为上有实数解,时,不成立;时,可得上有实数解,的导数为,可得所以递减,可得1所以时,,即恒成立,可得,即的取值范围是6.已知函数在点1处的切线垂直于轴.)求的单调区间;)若存在实数使得abc),求证:解:(在点1处的切线垂直于轴,1,得时,在区间单调递增,在区间单调递减.)证明:设abc,则欲证明:,即因为,且上单调递增,只需要证明ac构造,所以在区间上单减,在上单增,再证明:,令,则上单调递减,所以1,而,得证所以ca,得证结论成立.  

    相关试卷

    2023届高三数学一轮复习大题专练12导数有解问题2:

    这是一份2023届高三数学一轮复习大题专练12导数有解问题2,共8页。试卷主要包含了已知函数,,,,已知函数,已知实数,设函数,,已知函数和,已知函数,其中,令,已知函数,等内容,欢迎下载使用。

    2022届高考一轮复习第四章导数专练_与三角函数相结合的问题(Word含答案解析):

    这是一份2022届高考一轮复习第四章导数专练_与三角函数相结合的问题(Word含答案解析),文件包含2022届高考一轮复习第四章导数专练_与三角函数相结合的问题1含答案doc、2022届高考一轮复习第四章导数专练_与三角函数相结合的问题2含答案doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    2022届高考一轮复习第四章导数专练_双变量与极值点偏移问题(Word含答案解析):

    这是一份2022届高考一轮复习第四章导数专练_双变量与极值点偏移问题(Word含答案解析),文件包含2022届高考一轮复习第四章导数专练_双变量与极值点偏移问题1含答案doc、2022届高考一轮复习第四章导数专练_双变量与极值点偏移问题2含答案doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map