专题03 中点弦问题(学生版)-【高考总复习】2022高考数学满分突破之解析几何篇
展开专题02 中点弦问题(设而不求与点差法)
【突破满分数学之秒杀技巧与答题模板】:
第一步:若,是椭圆上不重合的两点,则,
第二步:两式相减得,
第三步:是直线的斜率,是线段的中点,化简可得,此种方法为点差法。
特别提醒:
若是椭圆上不垂直于x轴的两点,是的中点,为椭圆的中心,则直线与的斜率之积为定值
【考点精选例题精析】:
例1.已知双曲线为该双曲线的右焦点,过的直线交该双曲线于两点,且的中点,则该双曲线的方程为 .
例2.已知抛物线的一条弦恰好以为中点,则弦所在直线的方程是( )
A. B. C. D.
例3.已知椭圆,点为左焦点,点为下顶点,平行于的直线交椭圆于两点,且的中点为,则椭圆的离心率为
A. B. C. D.
例4.已知椭圆的左右焦点分别为,过左焦点作斜率为2的直线与椭圆交于两点,的中点是,为坐标原点,若直线的斜率为,则的值是
A.2 B. C. D.
例5.椭圆与直线交于、两点,过原点与线段中点的直线的斜率为,则的值为
A. B. C. D.
例6.已知椭圆的左、右焦点分别为,过左焦点作斜率为-2的直线与椭圆交于A,B两点,P是AB的中点,O为坐标原点,若直线OP的斜率为,则a的值是______.
例7.已知椭圆的一个顶点为,离心率,直线交椭圆于两点,如果的重心恰好为椭圆的右焦点,直线方程为________.
例8.已知为椭圆的右焦点,过点的直线与椭圆交于两点,为的中点,为坐标原点.若△是以为底边的等腰三角形,且△外接圆的面积为,则椭圆的长轴长为___________.
例9.如图,椭圆的离心率为,点是椭圆内一点,过点作两条斜率存在且互相垂直的动直线,设与椭圆相交于点,与椭圆相交于点.当点恰好为线段的中点时,.
(1)求椭圆的方程;
(2)求的最小值.
例10.已知椭圆的左、右焦点分别为,,点在椭圆上.
(1)若线段的中点坐标为,求直线的斜率;
(2)若三点共线,直线与椭圆交于两点,求面积的最大值,
例11.在平面直角坐标系中,已知椭圆的离心率为,为椭圆的一条弦(不经过原点),直线经过弦的中点,与椭圆交于、两点,设直线的斜率为.
(1)若点的坐标为,求椭圆的方程;
(2)求证:为定值;
(3)过作轴的垂线,垂足为,若直线和直线倾斜角互补,且的面积为,求椭圆的方程.
例12.已知直线:与椭圆:交于,两点.
(1)若直线过椭圆的左焦点,求;
(2)线段的垂直平分线与轴交于点,求.
【达标检测】:
A组 基础巩固
1.(2013年新课标全国卷I10)已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为 ( )
A. B. C. D.
2.(2010年新课标全国卷12)已知双曲线的中心为原点,是的焦点,过的直线与相交于
两点,且的中点为,则的方程为 ( )
A. B. C. D.
3.已知椭圆以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为( )
A.- B. C.-2 D.2
4.已知椭圆的方程为,斜率为的直线与椭圆相交于,两点,且线段的中点为,则该椭圆的离心率为( )
A. B. C. D.
5.已知椭圆中心在原点,且一个焦点为,直线与其相交于、两点,中点的横坐标为,则此椭圆的方程是
A. B. C. D.
6.如果椭圆的弦被点平分,则这条弦所在的直线方程是
A. B. C. D.
7.已知椭圆C:的离心率为,直线l与椭圆C交于两点,且线段的中点为,则直线l的斜率为( )
A. B. C. D.1
8.椭圆的一条弦被点平分,则此弦所在的直线方程是
A. B. C. D.
9.过椭圆C:右焦点F的直线l:交C于A、B两点,P为AB的中点,且OP的斜率为,则椭圆C的方程为( )
A. B. C. D.
10.已知椭圆,过点的直线交椭圆于、两点,若为的中点,则直线的方程为( )
A. B.
C. D.
11.已知点是直线被椭圆所截得的线段的中点,则直线的方程是( )
A. B.
C. D.
12.已知点P(1,2)是直线l被椭圆所截得的线段的中点,则直线l的方程是_____.
13.已知斜率为的直线与椭圆交于,两点.线段的中点为.
(1)证明:;
(2)设为的右焦点,为上一点,且.证明:.
14.已知椭圆的右焦点为,过点F且垂直于x轴的直线与椭圆相交所得的弦长为2.
(1)求椭圆C的方程;
(2)设A,B为椭圆C上的两动点,M为线段AB的中点,直线AB,OM(O为坐标原点)的斜率都存在且分别记为k1,k2,试问k1k2的值是否为定值?若是,求出这个定值;若不是,请说明理由.
15.设椭圆:的左、右焦点分别为,过的直线交椭圆于两点,若椭圆的离心率为,的周长为16.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过椭圆的中心而平行于弦的直线交椭圆于点,设弦的中点分别为.证明:三点共线.
16.已知椭圆的长轴长为,且短轴长是长轴长的一半.
(1)求椭圆的方程;
(2)经过点作直线,交椭圆于、两点.如果恰好是线段的中点,求直线的方程.
17.在平面直角坐标系中,已知椭圆:的离心率为,直线和椭圆交于,两点,当直线过椭圆的焦点,且与轴垂直时,.
(1)求椭圆的方程;
(2)是否存在与轴不垂直的直线,使弦的垂直平分线过椭圆的右焦点?若存在,求出直线的方程;若不存在,请说明理由.
18.已知椭圆:过点,离心率是.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于,两点,线段的中点为.求直线与坐标轴围成的三角形的面积.
B组 能力提升
19.已知椭圆:的右焦点为,且离心率为,三角形的三个顶点都在椭圆上,设它的三条边、、的中点分别为、、,且三条边所在直线的斜率分别为、、,且、、均不为0.为坐标原点,若直线、、的斜率之和为1.则( )
A. B.-3 C. D.
20.已知椭圆的右焦点和上顶点分别为点和点,直线交椭圆于两点,若恰好为的重心,则椭圆的离心率为( )
A. B.
C. D.
21.已知直线与椭圆交于、两点,与圆交于、两点.若存在,使得,则椭圆的离心率的取值范围是
A. B. C. D.
22.已知斜率为的直线l与椭圆交于A,B两点,线段AB中点M纵坐标为,点在椭圆上,若的平分线交线段AB于点N,则的值MN为( )
A. B. C. D.
23.已知椭圆C:,A,B是椭圆C上两点,且关于点对称,P是椭圆C外一点,满足,的中点均在椭圆C上,则点P的坐标是___________.
24.已知椭圆,点为左焦点,点为下顶点,平行于的直线交椭圆于两点,且的中点为,则椭圆的离心率为__________.
25.设椭圆的短轴长为4,离心率为.
(1)当直线与椭圆有公共点时,求实数的取值范围;
(2)设点是直线被椭圆所截得的线段的中点,求直线的方程.
26.椭圆,右焦点为,是斜率为的弦,的中点为,的垂直平分线交椭圆于,两点,的中点为.当时,直线的斜率为(为坐标原点).
(1)求椭圆的标准方程;
(2)设原点到直线的距离为,求的取值范围;
(3)若直线,直线的斜率满足,判断并证明是否为定值.
专题03 中点弦问题(点差法)-高考数学满分突破之解析几何篇: 这是一份专题03 中点弦问题(点差法)-高考数学满分突破之解析几何篇,文件包含专题03中点弦问题点差法教师版doc、专题03中点弦问题点差法学生版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
【高考总复习】2022高考数学满分突破之解析几何篇专题13 范围问题与最值问题(学生版+教师版): 这是一份【高考总复习】2022高考数学满分突破之解析几何篇专题13 范围问题与最值问题(学生版+教师版),共60页。
【高考总复习】2022高考数学满分突破之解析几何篇专题05 轨迹方程的求法(学生版+教师版): 这是一份【高考总复习】2022高考数学满分突破之解析几何篇专题05 轨迹方程的求法(学生版+教师版),共56页。