备战2022年高考数学数列专项题型-第14讲 数阵问题(数列群问题)(含解析)
展开第14讲 数阵问题(数列群问题)
一.选择题(共7小题)
1.把正奇数数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号一个数,,依次循环的规律分为(1),,,9,,,,,21,,,,则第50个括号内各数之和为
A.98 B.197 C.390 D.392
2.把数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,,循环分为:(3),,,11,,,17,19,,,,,31,,,37,39,,,,则第60个括号内各数之和为
A.1112 B.1168 C.1176 D.1192
3.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案.如图是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,求满足如下条件的最小四位整数:第2017行的第项为2的正整数幂.已知,那么该款软件的激活码是
A.1040 B.1045 C.1060 D.1065
4.几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是,接下来的两项是,,在接下来的三项式,,,依此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂.那么该款软件的激活码是
A.110 B.220 C.330 D.440
5.如图所示的“数阵”的特点是:每行每列都成等差数列,则数字145在图中出现的次数为
A.13 B.14 C.15 D.16
6.设为最接近的整数,如(1),(2),(3),(4),(5),,若正整数满足,则
A. B. C. D.
7.如图是从事网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推.若2013是第行从左至右算的第个数字,则为
A. B. C. D.
二.填空题(共8小题)
8.几位大学生响应国家的创业号召,开发了一款面向中学生的应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学题的答案:记集合.例如:,,,5,6,,若将集合的各个元素之和设为该软件的激活码,则该激活码应为 ;
定义现指定,将集合,的元素从小到大排列组成数列,若将的各项之和设为该软件的激活码,则该激活码应为 .
9.如图是网格工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行:数字2,3出现在第2行,数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第20行从左到右第5个数字为 .
10.“杨辉三角”是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,,则在该数列中,第35项是 .
11.杨辉三角(如图)是二项式系数在三角形中的一种几何排列.它是我国古代数学的杰出研究成果之一,将二项式系数图形化,是一种离散型的数形结合.杨辉三角蕴含了许多有趣的规律,比如:除1以外,所有正整数在如图中都出现有限次,如2出现1次,3和4都出现2次,试判断数字120在图形中共出现 次.
12.“杨辉三角形”是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形.帕斯卡是在1654年发现这一规律的,比杨辉要迟393年.“杨辉三角”是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来.下面数表类似“杨辉三角”,从上到下分别为第1行、第2行、第3行、第行、.它满足:①第行首尾的数均为;②第行除首尾的数外,每一个数都等于它肩上(即第行)两个数之和.记第行的第二个数为,则 .
13.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图,在“杨辉三角”中,去除所有为1的项.依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列前135项和为 .
14.分形是数学之美的体现,谢尔平斯基三角形就是其典型代表,其形式及构造如图所示,它与杨辉三角也有着密不可分的联系,请根据图示规律,用组合数表示杨辉三角第22行第9列 ;并判断其奇偶性 .(选填“奇”或“偶”
15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第行各数字的和为,如,,,,,,则
备战2022年高考数学数列专项题型-第15讲 创新型数列问题(含解析): 这是一份备战2022年高考数学数列专项题型-第15讲 创新型数列问题(含解析),文件包含第15讲创新型数列问题原卷版docx、第15讲创新型数列问题解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
备战2022年高考数学数列专项题型-第12讲 数列周期性问题(含解析): 这是一份备战2022年高考数学数列专项题型-第12讲 数列周期性问题(含解析),文件包含第12讲数列周期性问题原卷版docx、第12讲数列周期性问题解析版docx等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
备战2022年高考数学数列专项题型-第16讲 存在性问题(整除问题)(含解析): 这是一份备战2022年高考数学数列专项题型-第16讲 存在性问题(整除问题)(含解析),文件包含第16讲存在性问题整除问题原卷版docx、第16讲存在性问题整除问题解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。