还剩8页未读,
继续阅读
初中数学人教版 (五四制)九年级上册第32章 概率初步综合与测试单元测试课后复习题
展开
这是一份初中数学人教版 (五四制)九年级上册第32章 概率初步综合与测试单元测试课后复习题,共11页。试卷主要包含了定义,下列事件中,必然事件是,小亮和小刚按如下规则做游戏等内容,欢迎下载使用。
1.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )
A.至少有1个球是白球B.至少有1个球是黑球
C.至少有2个球是黑球D.至少有2个球是白球
2.在一个装有黑色围棋的盒子中摸出一颗棋子,摸到一颗白棋是( )
A.必然事件B.不确定事件C.不可能事件D.无法判断
3.一部纪录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”
对这位专家的陈述下面有四个推断:
①×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;
②大于50%,所以未来20年,A城市一定发生地震;
③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;
④不能确定在未来20年,A城市是否会发生地震;
其中合理的是( )
A.①③B.②③C.②④D.③④
4.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A.B.C.D.
5.如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是( )
A.B.C.D.
6.下列事件中,必然事件是( )
A.任意掷一枚均匀的硬币,正面朝上
B.明天我们可以去学校上学
C.通常情况下,抛出的篮球会下落
D.三角形内角和为360°
7.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择( )获胜的可能性较大.
A.5B.6C.7D.8
8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为( )
A.B.C.D.
9.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.
一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是( )
A.B.C.D.
10.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( )
A.三边中垂线的交点B.三边中线的交点
C.三条角平分线的交点D.三边上高的交点
二.填空题
11.成语“水中捞月”用概率的观点理解属于不可能事件,请仿照它写出一个必然事件 .
12.下列事件:
①随意翻到一本书的某页,这页的页码是奇数;
②测得某天的最高气温是100℃;
③掷一次骰子,向上一面的数字是2;
④度量四边形的内角和,结果是360°.
其中是随机事件的是 .(填序号)
13.下列事件中:
①掷一枚硬币,正面朝上;
②若a是实数,则|a|≥0;
③两直线平行,同位角相等;
④从车间刚生产的产品中任意抽取一个是次品.
其中属于必然事件的有 (填序号).
14.把如图自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是
15.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= .
16.如图,是由边长分别为2a和a的两个正方形组成,闭上眼睛,由针随意扎这个图形,小孔出现在阴影部分的概率是 .
17.某校初三年级在“停课不停学”期间,积极开展网上答疑活动,在某时间段共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室.为了解初三年级学生的答疑情况,学校教学管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为 .
18.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是 %.
19.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).
20.有六张正面分别标有数0,1,2,3,4,5的不透明卡片,它们除了数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程+2=有正整数解的概率为
三.解答题
21.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
22.下列有四种说法:
①了解某一天出入宜宾市的人口流量用普查方式最容易;
②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;
③“打开电视机,正在播放少儿节目”是随机事件;
④如果一件事发生的概率只有十万分之一,那么他仍是可能发生的事件.
其中,正确的说法是 .
23.一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品
指出这些事件分别是什么事件.
24.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.
(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?
(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?
25.下列三种说法:
(1)三条任意长的线段都可以组成一个三角形;
(2)任意掷一枚均匀的硬币,正面一定朝上;
(3)购买一张彩票可能中奖.
其中,正确说法的序号是 .
26.一个不透明的布袋里装有3个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率.
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.
27.如图,现有一个均匀的转盘被平均分成6等份,分别标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.
求:
(1)转动转盘,转出的数字大于3的概率是多少;
(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.
①这三条线段能构成三角形的概率是多少?
②这三条线段能构成等腰三角形的概率是多少?
参考答案与试题解析
一.选择题
1.解:由题意,得
一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有一个黑球,是必然事件,
故选:B.
2.解:在一个装有黑色围棋的盒子中摸出一颗棋子,摸到一颗白棋是不可能的,
因而这是一个不可能事件.
3.解:∵一位专家指出:在未来的20年,A市发生地震的机会是三分之二,
∴未来20年内,A市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A城市是否会发生地震,
故选:D.
4.解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为=.
故选:A.
5.解:正方形的面积=4×4=16,
三角形ABC的面积=16﹣=5,
所以落在△ABC内部的概率是,
故选:D.
6.解:A、任意掷一枚均匀的硬币,正面朝上是随机事件;
B、明天我们可以去学校上学是随机事件;
C、通常情况下,抛出的篮球会下落是必然事件;
D、三角形内角和为360°是不可能事件;
故选:C.
7.解:两人抛掷骰子各一次,共有6×6=36种等可能的结果,
点数之和为7的有6种,最多,
故选择7获胜的可能性大,
故选:C.
8.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,
∴这句话中任选一个汉字,这个字是“山”的概率是;
故选:A.
9.解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.
故选:C.
10.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,
∴凳子应放在△ABC的三边中垂线的交点最适当.
故选:A.
二.填空题
11.解:根据概念,可写出如“瓮中捉鳖”.
12.解:①是随机事件;
②是不可能事件;
③是随机事件;
④是必然事件.
故答案是:①③.
13.解:①是随机事件;
②是必然事件;
③是必然事件;
④是随机事件.
故答案是:②③.
14.解:黑色部分多的可能性较大,自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是④<②<①<③<⑥<⑤.
15.解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中黄球n个,
根据古典型概率公式知:P(黄球)==.
解得n=16.
故答案为:16.
16.解:∵图形的总面积为a2+(2a)2=5a2,阴影部分面积为5a2﹣(2a+a)×2a÷2=2a2,
∴小孔出现在阴影部分的概率是=.
故答案为.
17.解:根据题意可知:
共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室,
管理人员随机进入一个网络教室,
则该教室是数学答疑教室的概率为.
故答案为:.
18.解:小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,
那么两人下一盘棋小红不输的概率是1﹣46%=54%.
19.解:所有可能出现的结果如下表所示:
因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,
所以出现两个正面的概率为,一正一反的概率为=,
因为二者概率不等,所以游戏不公平.
故答案为:,不公平.
20.解:解分式方程得:x=,
∵分式方程的解为正整数,
∴2﹣a>0,
∴a<2,
∴a=0,1,
∵分式方程的解为正整数,
当a=1时,x=2不合题意,
∴a=0,
∴使关于x的分式方程有正整数解的概率为,
故答案为:.
三.解答题
21.解:(1)当n=5或6时,这个事件必然发生;
(2)当n=1或2时,这个事件不可能发生;
(3)当n=3或4时,这个事件为可能发生.
22.解:其中正确的说法是②、③、④.
23.解:(1),(2)可能发生,也可能不发生,是随机事件.
(3)一定不会发生,是不可能事件.
(4)一定发生,是必然事件.
24.解:(1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为;
(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,
所以“爆掉”的可能性为.
25.解:根据题意,(1)(2)(3)中表述的均是随机事件,即可能发生也可能不发生的事件;
故正确的是(3),(1)(2)都是错误的;
故答案为(3).
26.解:(1)设红球的个数为x,由题意可得:=,
解得:x=2,经检验x=2是方程的根,
即红球的个数为2个;
(2)画树状图如下:
∴P(摸得两白)==.
27.解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,
∴转出的数字大于3的概率是=;
(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,
∴这三条线段能构成三角形的概率是;
②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,
∴这三条线段能构成等腰三角形的概率是=.
M号衬衫数
1
3
4
5
7
包数
20
7
10
11
12
正
反
正
(正,正)
(正,反)
反
(反,正)
( 反,反)
1.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )
A.至少有1个球是白球B.至少有1个球是黑球
C.至少有2个球是黑球D.至少有2个球是白球
2.在一个装有黑色围棋的盒子中摸出一颗棋子,摸到一颗白棋是( )
A.必然事件B.不确定事件C.不可能事件D.无法判断
3.一部纪录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”
对这位专家的陈述下面有四个推断:
①×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;
②大于50%,所以未来20年,A城市一定发生地震;
③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;
④不能确定在未来20年,A城市是否会发生地震;
其中合理的是( )
A.①③B.②③C.②④D.③④
4.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A.B.C.D.
5.如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是( )
A.B.C.D.
6.下列事件中,必然事件是( )
A.任意掷一枚均匀的硬币,正面朝上
B.明天我们可以去学校上学
C.通常情况下,抛出的篮球会下落
D.三角形内角和为360°
7.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择( )获胜的可能性较大.
A.5B.6C.7D.8
8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为( )
A.B.C.D.
9.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.
一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是( )
A.B.C.D.
10.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( )
A.三边中垂线的交点B.三边中线的交点
C.三条角平分线的交点D.三边上高的交点
二.填空题
11.成语“水中捞月”用概率的观点理解属于不可能事件,请仿照它写出一个必然事件 .
12.下列事件:
①随意翻到一本书的某页,这页的页码是奇数;
②测得某天的最高气温是100℃;
③掷一次骰子,向上一面的数字是2;
④度量四边形的内角和,结果是360°.
其中是随机事件的是 .(填序号)
13.下列事件中:
①掷一枚硬币,正面朝上;
②若a是实数,则|a|≥0;
③两直线平行,同位角相等;
④从车间刚生产的产品中任意抽取一个是次品.
其中属于必然事件的有 (填序号).
14.把如图自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是
15.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= .
16.如图,是由边长分别为2a和a的两个正方形组成,闭上眼睛,由针随意扎这个图形,小孔出现在阴影部分的概率是 .
17.某校初三年级在“停课不停学”期间,积极开展网上答疑活动,在某时间段共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室.为了解初三年级学生的答疑情况,学校教学管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为 .
18.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是 %.
19.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).
20.有六张正面分别标有数0,1,2,3,4,5的不透明卡片,它们除了数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程+2=有正整数解的概率为
三.解答题
21.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
22.下列有四种说法:
①了解某一天出入宜宾市的人口流量用普查方式最容易;
②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;
③“打开电视机,正在播放少儿节目”是随机事件;
④如果一件事发生的概率只有十万分之一,那么他仍是可能发生的事件.
其中,正确的说法是 .
23.一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品
指出这些事件分别是什么事件.
24.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.
(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?
(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?
25.下列三种说法:
(1)三条任意长的线段都可以组成一个三角形;
(2)任意掷一枚均匀的硬币,正面一定朝上;
(3)购买一张彩票可能中奖.
其中,正确说法的序号是 .
26.一个不透明的布袋里装有3个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率.
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.
27.如图,现有一个均匀的转盘被平均分成6等份,分别标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.
求:
(1)转动转盘,转出的数字大于3的概率是多少;
(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.
①这三条线段能构成三角形的概率是多少?
②这三条线段能构成等腰三角形的概率是多少?
参考答案与试题解析
一.选择题
1.解:由题意,得
一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有一个黑球,是必然事件,
故选:B.
2.解:在一个装有黑色围棋的盒子中摸出一颗棋子,摸到一颗白棋是不可能的,
因而这是一个不可能事件.
3.解:∵一位专家指出:在未来的20年,A市发生地震的机会是三分之二,
∴未来20年内,A市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A城市是否会发生地震,
故选:D.
4.解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为=.
故选:A.
5.解:正方形的面积=4×4=16,
三角形ABC的面积=16﹣=5,
所以落在△ABC内部的概率是,
故选:D.
6.解:A、任意掷一枚均匀的硬币,正面朝上是随机事件;
B、明天我们可以去学校上学是随机事件;
C、通常情况下,抛出的篮球会下落是必然事件;
D、三角形内角和为360°是不可能事件;
故选:C.
7.解:两人抛掷骰子各一次,共有6×6=36种等可能的结果,
点数之和为7的有6种,最多,
故选择7获胜的可能性大,
故选:C.
8.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,
∴这句话中任选一个汉字,这个字是“山”的概率是;
故选:A.
9.解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.
故选:C.
10.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,
∴凳子应放在△ABC的三边中垂线的交点最适当.
故选:A.
二.填空题
11.解:根据概念,可写出如“瓮中捉鳖”.
12.解:①是随机事件;
②是不可能事件;
③是随机事件;
④是必然事件.
故答案是:①③.
13.解:①是随机事件;
②是必然事件;
③是必然事件;
④是随机事件.
故答案是:②③.
14.解:黑色部分多的可能性较大,自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是④<②<①<③<⑥<⑤.
15.解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中黄球n个,
根据古典型概率公式知:P(黄球)==.
解得n=16.
故答案为:16.
16.解:∵图形的总面积为a2+(2a)2=5a2,阴影部分面积为5a2﹣(2a+a)×2a÷2=2a2,
∴小孔出现在阴影部分的概率是=.
故答案为.
17.解:根据题意可知:
共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室,
管理人员随机进入一个网络教室,
则该教室是数学答疑教室的概率为.
故答案为:.
18.解:小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,
那么两人下一盘棋小红不输的概率是1﹣46%=54%.
19.解:所有可能出现的结果如下表所示:
因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,
所以出现两个正面的概率为,一正一反的概率为=,
因为二者概率不等,所以游戏不公平.
故答案为:,不公平.
20.解:解分式方程得:x=,
∵分式方程的解为正整数,
∴2﹣a>0,
∴a<2,
∴a=0,1,
∵分式方程的解为正整数,
当a=1时,x=2不合题意,
∴a=0,
∴使关于x的分式方程有正整数解的概率为,
故答案为:.
三.解答题
21.解:(1)当n=5或6时,这个事件必然发生;
(2)当n=1或2时,这个事件不可能发生;
(3)当n=3或4时,这个事件为可能发生.
22.解:其中正确的说法是②、③、④.
23.解:(1),(2)可能发生,也可能不发生,是随机事件.
(3)一定不会发生,是不可能事件.
(4)一定发生,是必然事件.
24.解:(1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为;
(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,
所以“爆掉”的可能性为.
25.解:根据题意,(1)(2)(3)中表述的均是随机事件,即可能发生也可能不发生的事件;
故正确的是(3),(1)(2)都是错误的;
故答案为(3).
26.解:(1)设红球的个数为x,由题意可得:=,
解得:x=2,经检验x=2是方程的根,
即红球的个数为2个;
(2)画树状图如下:
∴P(摸得两白)==.
27.解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,
∴转出的数字大于3的概率是=;
(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,
∴这三条线段能构成三角形的概率是;
②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,
∴这三条线段能构成等腰三角形的概率是=.
M号衬衫数
1
3
4
5
7
包数
20
7
10
11
12
正
反
正
(正,正)
(正,反)
反
(反,正)
( 反,反)