数学9.3 统计分析案例 公司员工达标测试
展开9.3 统计案例 公司员工的肥胖情况调查分析
(用时45分钟)
【选题明细表】
知识点、方法 | 题号 |
由统计信息解决实际问题 | 1,2,3,4,5,6,7,8,9,10,11,12 |
基础巩固
1.一组数据的方差为,平均数为,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数分别为( )
A., B., C., D.,
【答案】C
【解析】设该组数据为,将这组数据中的每一个数都乘以2,则有,平均数为.又,则新数据的方差为,
故选:C.
2.某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为
A.10万元 B.12万元
C.15万元 D.30万元
【答案】D
【解析】9时至10时的销售额频率为0.1,因此所有销售总额为万元,故选D.
3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是
A.中位数 B.平均数
C.方差 D.极差
【答案】A
【解析】设9位评委评分按从小到大排列为.
则①原始中位数为,去掉最低分,最高分,后剩余,
中位数仍为,A正确.
②原始平均数,后来平均数
平均数受极端值影响较大,与不一定相同,B不正确
③
由②易知,C不正确.
④原极差,后来极差可能相等可能变小,D不正确.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A. B. C. D.
【答案】C
【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.
5.AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是( )
A.这12天中有6天空气质量为“优良”
B.这12天中空气质量最好的是4月9日
C.这12天的AQI指数值的中位数是90
D.从4日到9日,空气质量越来越好
【答案】C
【解析】
由图可知,不大于100天有6日到11日,共6天,所以A对,不选. 最小的一天为10日,所以B对,不选.中位为是,C错.从图中可以4日到9日越来越小,D对.所以选C.
6.甲、乙两套设备生产的同类型产品共48000件,采用分层随机抽样的方法从中抽取一个容量为80的样本进行质量检测若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.
【答案】18000
【解析】∵样本中有50件产品由甲设备生产,样本中有30件产品由乙设备生产,则乙设备生产的产品总数为(件)
故答案为:
7.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .
【答案】10
【解析】设样本数据为:
若样本数据中的最大值为11,不妨设,由于样本数据互不相同,与这是不可能成立的,若样本数据为4,6,7,8,10,代入验证知两式均成立,此时样本数据中的最大值为 10
8.在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下;分别求这17名运动员的成绩的众数、中位数、平均数(保留到小数点后两位),并分析这些数据的含义.
成绩/m | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 | 1.85 | 1.90 |
人数 | 2 | 3 | 2 | 3 | 4 | 1 | 1 | 1 |
【答案】众数1.75m,中位数1.70m,平均数1.69m,含义见解析
【解析】在17个数据中,1.75出现了4次,次数最多,众数是1.75m.
将数据按从小到大的顺序排列,易知中位数是1.70m.
平均数是
这17名运动员的成绩的众数、中位数、平均数分别是1.75m,1.70m,1.69m.
众数是1.75m,说明跳1.75m的人数最多;中位数是1.70m,说明跳1.70m以下和70m以上的人数相等;
平均数是1.69m,说明所有参赛运动员的平均成绩是1.69m.
能力提升
9.某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )
A.73.3,75,72 B.73.3,80,73
C.70,70,76 D.70,75,75
【答案】A
【解析】由频率分布直方图知,小于70的有24人,大于80的有18人,
则在[70,80]之间18人,所以中位数为7073.3;
众数就是分布图里最高的小矩形底边的中点,即[70,80]的中点横坐标,是75;
平均数为45×0.05+55×0.15+65×0.20+75×0.30+85×0.25+95×0.05=72.
故选A.
10.某市有15个旅游景点,经计算,黄金周期间各个景点的旅游人数平均为20万,标准差为s,后来经核实,发现甲、乙两处景点统计的人数有误,甲景点实际为20万,被误统计为15万,乙景点实际为18万, 被误统计成23万;更正后重新计算,得到标准差为s1,则s与s1的大小关系为_____________.
【答案】s>s1.
【解析】由已知,两次统计所得的旅游人数总数没有变,即两次统计的各景点旅游人数的平均数是相同的,设为,
则s=,
s1=.
若比较s与s1的大小,只需比较(15-)2+(23-)2与(20-)2+(18-)2的大小即可.而(15-)2+(23-)2=754-76+22,(20-)2+(18-)2=724-76+22,所以(15-)2+(23-)2>(20-)2+(18-)2.从而s>s1.
11.甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.
(1)分别求出两人得分的平均数与方差;
(2)根据图和(1)中的计算结果,对两人的训练成绩作出评价.
【答案】(1)甲=13,乙=13,s=4,s=0.8.
(2)由s>s可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.
【解析】(1)由图可得甲、乙两人五次测试的成绩分别为
甲:10,13,12,14,16;
乙:13,14,12,12,14.
甲==13,
乙==13,
s=×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,
s=×[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.
(2)由s>s可知乙的成绩较稳定.
从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.
素养达成
12.为提倡节能减排,同时减轻居民负担,广州市积极推进“一户一表”工程.非一户一表用户电费采用“合表电价”收费标准:0.65元/度.“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:
| 第一档 | 第二档 | 第三档 |
每户每月用电量 (单位:度) | [0,200] | (200,400] | (400,+∞) |
电价(单位:元/度) | 0.61 | 0.66 | 0.91 |
例如:某用户11月用电410度,采用合表电价收费标准,应交电费410×0.65=266.5(元),若采用阶梯电价收费标准,应交电费200×0.61+(400-200)×0.66+(410-400)×0.91=263.1(元).
为调查阶梯电价是否能取到“减轻居民负担”的效果,随机调查了该市100户居民的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量(单位:度)为88、268、370、140、440、420、520、320、230、380.
组别 | 月用电量 | 频数统计 | 频数 | 频率 |
① | [0,100] |
|
| |
② | (100,200] |
|
| |
③ | (200,300] |
|
| |
④ | (300,400] |
|
| |
⑤ | (400,500] |
|
| |
⑥ | (500,600] |
|
| |
合计 |
|
|
|
(1)完成频率分布表,并绘制频率分布直方图;
(2)根据已有信息,试估计全市住户11月的平均用电量(同一组数据用该区间的中点值作代表);
(3)设某用户11月用电量为x度(x∈N),按照合表电价收费标准应交y1元,按照阶梯电价收费标准应交y2元,请用x表示y1和y2,并求当y2≤y1时,x的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于75%的用户带来实惠?
【答案】(1)见解析 (2)324度.
(3)y1=0.65x,y2=.x的最大值为423.
故估计“阶梯电价”能给不低于75%的用户带来实惠.
【解析】(1)频率分布表如下:
组别 | 月用电量 | 频数统计 | 频数 | 频率 |
① | [0,100] | 4 | 0.04 | |
② | (100,200] | 12 | 0.12 | |
③ | (200,300] | 24 | 0.24 | |
④ | (300,400] | 30 | 0.30 | |
⑤ | (400,500] | 26 | 0.26 | |
⑥ | (500,600] | 4 | 0.04 | |
合计 |
| 100 | 1 |
频率分布直方图如图:
(2)该100户用户11月的平均用电量
=50×0.04+150×0.12+250×0.24+350×0.3+450×0.26+550×0.04=324(度),
所以估计全市住户11月的平均用电量为324度.
(3)y1=0.65x,
y2=.
由y2≤y1得或
或,
解得x≤≈423.1.
因为x∈N,故x的最大值为423.
根据频率分布直方图,x≤423时的频率为0.04+0.12+0.24+0.3+23×0.002 6=0.759 8>0.75,
故估计“阶梯电价”能给不低于75%的用户带来实惠.
9.3 统计案例 公司员工的肥胖情况调查分析: 这是一份9.3 统计案例 公司员工的肥胖情况调查分析,文件包含19.3统计案例公司员工的肥胖情况调查分析ppt、9.3统计案例公司员工的肥胖情况调查分析doc、19.3应用案巩固提升doc等3份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
高中数学人教A版 (2019)必修 第二册第九章 统计9.3 统计分析案例 公司员工练习: 这是一份高中数学人教A版 (2019)必修 第二册第九章 统计9.3 统计分析案例 公司员工练习,文件包含93统计案例练案解析版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx、93统计案例练案原卷版-2022-2023学年高一数学同步备课人教A版2019必修第二册docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
数学必修 第二册9.3 统计分析案例 公司员工同步达标检测题: 这是一份数学必修 第二册9.3 统计分析案例 公司员工同步达标检测题,文件包含93统计案例公司员工的肥胖情况调查分析提升练-2020-2021学年下学期高一数学同步课堂人教A版2019必修第二册解析版doc、93统计案例公司员工的肥胖情况调查分析提升练-2020-2021学年下学期高一数学同步课堂人教A版2019必修第二册原卷版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。