三年(2019-2021)高考数学(理)真题分项汇编之专题07平面解析几何(选择题、填空题)(原卷版)
展开专题07 平面解析几何(选择题、填空题)
1.【2021·北京高考真题】双曲线过点,且离心率为,则该双曲线的标准方程为( )
A. B. C. D.
2.【2021·北京高考真题】已知圆,直线,当变化时,截得圆弦长的最小值为2,则( )
A. B. C. D.
3.【2021·全国高考真题】已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13 B.12 C.9 D.6
4.【2021·浙江高考真题】已知,函数.若成等比数列,则平面上点的轨迹是( )
A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线
5.【2021·全国高考真题(理)】已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
A. B. C. D.
6.【2021·全国高考真题(理)】设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. B. C. D.
7.【2021·全国高考真题】已知点在圆上,点、,则( )
A.点到直线的距离小于
B.点到直线的距离大于
C.当最小时,
D.当最大时,
8.【2020年高考全国Ⅰ卷理数】已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=
A.2 B.3
C.6 D.9
9.【2020年高考全国Ⅰ卷理数】已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为
A. B.
C. D.
10.【2020年高考全国Ⅲ卷理数】设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为
A. B.
C. D.
11.【2020年高考全国Ⅲ卷理数】11.设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=
A. 1 B. 2
C. 4 D. 8
12.【2020年高考全国Ⅱ卷理数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为
A. B.
C. D.
13.【2020年高考全国Ⅱ卷理数】设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为
A.4 B.8
C.16 D.32
14.【2020年高考天津】设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为
A. B. C. D.
15.【2020年高考北京】已知半径为1的圆经过点,则其圆心到原点的距离的最小值为
A. 4 B. 5
C. 6 D. 7
16.【2020年高考北京】设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线
A. 经过点 B. 经过点
C. 平行于直线 D. 垂直于直线
17.【2020年高考浙江】已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数图象上的点,则|OP|=
A. B.
C. D.
18.【2020年新高考全国Ⅰ卷】已知曲线.
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn<0,则C是双曲线,其渐近线方程为
D.若m=0,n>0,则C是两条直线
19.【2019年高考全国Ⅰ卷理数】已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
A. B.
C. D.
20.【2019年高考全国Ⅱ卷理数】若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=
A.2 B.3
C.4 D.8
21.【2019年高考全国Ⅱ卷理数】设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为
A. B.
C.2 D.
22.【2019年高考全国Ⅲ卷理数】双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为
A. B.
C. D.
23.【2019年高考北京卷理数】已知椭圆(a>b>0)的离心率为,则
A.a2=2b2 B.3a2=4b2
C.a=2b D.3a=4b
24.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A.① B.②
C.①② D.①②③
25.【2019年高考天津卷理数】已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为
A. B.
C. D.
26.【2019年高考浙江卷】渐近线方程为x±y=0的双曲线的离心率是
A. B.1
C. D.2
27.【2021·全国高考真题】已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.
28.【2021·全国高考真题(理)】已知双曲线的一条渐近线为,则C的焦距为_________.
29.【2021·北京高考真题】已知抛物线,焦点为,点为抛物线上的点,且,则的横坐标是_______;作轴于,则_______.
30.【2021·浙江高考真题】已知椭圆,焦点,,若过的直线和圆相切,与椭圆在第一象限交于点P,且轴,则该直线的斜率是___________,椭圆的离心率是___________.
31.【2020年高考全国I卷理数】已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为 .
32.【2020年高考天津】已知直线和圆相交于两点.若,则的值为_________.
33.【2020年高考北京】已知双曲线,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.
34.【2020年高考浙江】已知直线与圆和圆均相切,则_______,b=_______.
35.【2020年高考江苏】在平面直角坐标系xOy中,若双曲线的一条渐近线方程为,则该双曲线的离心率是 ▲ .
36.【2020年新高考全国Ⅰ卷】斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
37.【2020年高考江苏】在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是 ▲ .
38.【2019年高考浙江卷】已知圆的圆心坐标是,半径长是.若直线与圆C相切于点,则=___________,=___________.
39.【2019年高考浙江卷】已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是___________.
40.【2019年高考全国Ⅲ卷理数】设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为___________.
41.【2019年高考全国Ⅰ卷理数】已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.
42.【2019年高考江苏卷】在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是 ▲ .
43.【2019年高考江苏卷】在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是 ▲ .
三年高考(2019-2021)数学(理)试题分项汇编——专题07 平面解析几何(选择题、填空题)(教师版): 这是一份三年高考(2019-2021)数学(理)试题分项汇编——专题07 平面解析几何(选择题、填空题)(教师版),共29页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。
专题07 平面解析几何(选择题、填空题) 三年高考(2019-2021)数学(文)试题分项汇编: 这是一份专题07 平面解析几何(选择题、填空题) 三年高考(2019-2021)数学(文)试题分项汇编,文件包含专题07平面解析几何选择题填空题教师版三年高考2019-2021数学文试题分项汇编doc、专题07平面解析几何选择题填空题学生版三年高考2019-2021数学文试题分项汇编doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题07平面解析几何(选择题、填空题)(解析版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题07平面解析几何(选择题、填空题)(解析版),共27页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。