三年(2019-2021)高考数学(理)真题分项汇编之专题06立体几何(解答题)(原卷版)
展开专题06 立体几何(解答题)
1.【2021·全国高考真题】如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;
(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.
2.【2021·浙江高考真题】如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.
(1)证明:;
(2)求直线与平面所成角的正弦值.
3.【2021·全国高考真题(理)】已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
4.【2021·全国高考真题(理)】如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;
(2)求二面角的正弦值.
5.【2021·北京高考真题】已知正方体,点为中点,直线交平面于点.
(1)证明:点为的中点;
(2)若点为棱上一点,且二面角的余弦值为,求的值.
6.【2020年高考全国Ⅰ卷理数】如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.
(1)证明:平面;
(2)求二面角的余弦值.
7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
8.【2020年高考全国Ⅱ卷理数】如图,在长方体中,点分别在棱上,且,.
(1)证明:点在平面内;
(2)若,,,求二面角的正弦值.
9.【2020年高考江苏】在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.
(1)求证:EF∥平面AB1C1;
(2)求证:平面AB1C⊥平面ABB1.
10.【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.
(Ⅰ)证明:EF⊥DB;
(Ⅱ)求直线DF与平面DBC所成角的正弦值.
11.【2020年高考天津】如图,在三棱柱中,平面,,点分别在棱和棱上,且为棱的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求直线与平面所成角的正弦值.
12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A−MA1−N的正弦值.
13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
15.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
(1)求证:CD⊥平面PAD;
(2)求二面角F–AE–P的余弦值;
(3)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
16.【2019年高考天津卷理数】如图,平面,,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)若二面角的余弦值为,求线段的长.
17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.
求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
18.【2019年高考浙江卷】如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.
(1)证明:;
(2)求直线EF与平面A1BC所成角的余弦值.
三年(2019-2021)高考数学(理)真题分项汇编之专题12数列(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题12数列(原卷版),共7页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题15概率与统计(解答题)(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题15概率与统计(解答题)(原卷版),共6页。试卷主要包含了【2020年高考山东】等内容,欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题11平面向量(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题11平面向量(原卷版),共3页。