所属成套资源:2021年高考理科数学一轮复习题型高效训练突破
2021年高考理科数学一轮复习:专题8.5 空间向量及其运算 题型全归纳与高效训练突破
展开
这是一份2021年高考理科数学一轮复习:专题8.5 空间向量及其运算 题型全归纳与高效训练突破,文件包含专题85空间向量及其运算学生版docx、专题85空间向量及其运算老师版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
目录
TOC \ "1-3" \h \u \l "_Tc8460" 一、考点全归纳 PAGEREF _Tc8460 1
\l "_Tc16669" 二 题型全归纳 PAGEREF _Tc16669 4
\l "_Tc4923" 题型一 空间向量的线性运算 PAGEREF _Tc4923 4
\l "_Tc7900" 题型二 共线、共面向量定理的应用 PAGEREF _Tc7900 5
\l "_Tc27448" 题型三 空间向量数量积的应用 PAGEREF _Tc27448 7
\l "_Tc6365" 题型四 利用向量证明平行与垂直 PAGEREF _Tc6365 10
\l "_Tc30326" 类型一 证明平行问题 PAGEREF _Tc30326 11
\l "_Tc3587" 类型二 证明垂直问题 PAGEREF _Tc3587 12
\l "_Tc19077" 三、高效训练突破 PAGEREF _Tc19077 14
一、考点全归纳
1.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.其中{a,b,c}叫做空间的一个基底.
2.两个向量的数量积(与平面向量基本相同)
(1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤〈a,b〉≤π.若〈a,b〉=eq \f(π,2),则称向量a,b互相垂直,记作a⊥b.
(2)两向量的数量积
两个非零向量a,b的数量积a·b=|a||b|cs〈a,b〉.
(3)向量的数量积的性质
①a·e=|a|cs〈a,e〉(其中e为单位向量);
②a⊥b⇔a·b=0;
③|a|2=a·a=a2;
④|a·b|≤|a||b|.
(4)向量的数量积满足如下运算律
①(λa)·b=λ(a·b);
②a·b=b·a(交换律);
③a·(b+c)=a·b+a·c(分配律).
3.空间向量的坐标运算
(1)设a=(a1,a2,a3),b=(b1,b2,b3).
a+b=(a1+b1,a2+b2,a3+b3),
a-b=(a1-b1,a2-b2,a3-b3),
λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3,
a⊥b⇔a1b1+a2b2+a3b3=0,
a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
cs〈a,b〉=eq \f(a·b,|a|·|b|)=eq \f(a1b1+a2b2+a3b3,\r(aeq \\al(2,1)+aeq \\al(2,2)+aeq \\al(2,3))·\r(beq \\al(2,1)+beq \\al(2,2)+beq \\al(2,3))) .
(2)设A(x1,y1,z1),B(x2,y2,z2),
则eq \(AB,\s\up6(→))=eq \(OB,\s\up6(→))-eq \(OA,\s\up6(→))=(x2-x1,y2-y1,z2-z1).
4.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称eq \(AB,\s\up6(→))为直线l的方向向量,与eq \(AB,\s\up6(→))平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.
(2)平面的法向量
①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.
②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为eq \b\lc\{(\a\vs4\al\c1(n·a=0,,n·b=0.))
5.空间位置关系的向量表示
【常用结论】
1.向量三点共线定理
在平面中A,B,C三点共线的充要条件是:eq \(OA,\s\up6(→))=xeq \(OB,\s\up6(→))+yeq \(OC,\s\up6(→))(其中x+y=1),O为平面内任意一点.
2.向量四点共面定理
在空间中P,A,B,C四点共面的充要条件是:eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→))+zeq \(OC,\s\up6(→))(其中x+y+z=1),O为空间任意一点.
二 题型全归纳
题型一 空间向量的线性运算
【题型要点】用已知向量表示未知向量的解题策略
(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.
(2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.
(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.
【例1】在三棱锥OABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))表示(1)eq \(MG,\s\up6(→));(2)eq \(OG,\s\up6(→)).
【例2】.如图所示,在平行六面体ABCDA1B1C1D1中,设eq \(AA1,\s\up6(→))=a,eq \(AB,\s\up6(→))=b,eq \(AD,\s\up6(→))=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1)eq \(AP,\s\up6(→));(2)eq \(A1N,\s\up6(→));(3)eq \(MP,\s\up6(→))+eq \(NC1,\s\up6(→)).
题型二 共线、共面向量定理的应用
【题型要点】证明三点共线和空间四点共面的方法比较
【例1】(2020·衡水中学模拟)如图所示,已知斜三棱柱ABCA1B1C1,点M,N分别在AC1和BC上,且满足eq \(AM,\s\up6(→))=keq \(AC1,\s\up6(→)),eq \(BN,\s\up6(→))=keq \(BC,\s\up6(→))(0≤k≤1).
(1)向量eq \(MN,\s\up6(→))是否与向量eq \(AB,\s\up6(→)),eq \(AA1,\s\up6(→))共面?
(2)直线MN是否与平面ABB1A1平行?
【例2】.如图,在四棱柱ABCDA1B1C1D1中,底面ABCD是平行四边形,E,F,G分别是A1D1,D1D,D1C1的中点.
(1)试用向量eq \(AB,\s\up6(→)),eq \(AD,\s\up6(→)),eq \(AA1,\s\up6(→))表示eq \(AG,\s\up6(→));
(2)用向量方法证明平面EFG∥平面AB1C.
题型三 空间向量数量积的应用
【题型要点】空间向量数量积的三个应用
【例1】如图所示,四棱柱ABCDA1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求证:AC1⊥BD;
(3)求BD1与AC夹角的余弦值.
【例2】如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)eq \(EF,\s\up6(→))·eq \(BA,\s\up6(→));
(2)eq \(EG,\s\up6(→))·eq \(BD,\s\up6(→)).
题型四 利用向量证明平行与垂直
【题型要点】(1)利用空间向量解决平行、垂直问题的一般步骤
①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;
②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;
③通过空间向量的坐标运算研究平行、垂直关系;
④根据运算结果解释相关问题.
(2)空间线面位置关系的坐标表示
设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).
①线线平行
l∥m⇔a∥b⇔a=kb⇔a1=ka2,b1=kb2,c1=kc2.
②线线垂直
l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0.
③线面平行(l⊄α)
l∥α⇔a⊥u⇔a·u=0⇔a1a3+b1b3+c1c3=0.
④线面垂直
l⊥α⇔a∥u⇔a=ku⇔a1=ka3,b1=kb3,c1=kc3.
⑤面面平行
α∥β⇔u∥v⇔u=kv⇔a3=ka4,b3=kb4,c3=kc4.
⑥面面垂直
α⊥β⇔u⊥v⇔u·v=0⇔a3a4+b3b4+c3c4=0.
类型一 证明平行问题
【例1】如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:
(1)PB∥平面EFG;
(2)平面EFG∥平面PBC.
类型二 证明垂直问题
【例2】如图,在三棱锥PABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.
(1)证明:AP⊥BC;
(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.
三、高效训练突破
一、选择题
1.已知a=(2,3,-4),b=(-4,-3,-2),b=eq \f(1,2)x-2a,则x等于( )
A.(0,3,-6) B.(0,6,-20)
C.(0,6,-6) D.(6,6,-6)
2.若eq \(AB,\s\up8(→))=λeq \(CD,\s\up8(→))+μeq \(CE,\s\up8(→)),则直线AB与平面CDE的位置关系是( )
A.相交 B.平行
C.在平面内 D.平行或在平面内
3.已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则下列结论正确的是( )
A.a∥c,b∥c B.a∥b,a⊥c
C.a∥c,a⊥b D.以上都不对
4.如图所示,三棱锥OABC中,M,N分别是AB,OC的中点,设eq \(OA,\s\up8(→))=a,eq \(OB,\s\up8(→))=b,eq \(OC,\s\up8(→))=c,用a,b,c表示eq \(NM,\s\up8(→)),则eq \(NM,\s\up8(→))=( )
A.eq \f(1,2)(-a+b+c) B.eq \f(1,2)(a+b-c)
C.eq \f(1,2)(a-b+c) D.eq \f(1,2)(-a-b+c)
5.如图,在大小为45°的二面角AEFD中,四边形ABFE,四边形CDEF都是边长为1的正方形,则B,D两点间的距离是( )
A.eq \r(3) B.eq \r(2)
C.1 D.eq \r(3-\r(2))
6.已知A(1,0,0),B(0,-1,1),O为坐标原点,eq \(OA,\s\up6(→))+λeq \(OB,\s\up6(→))与eq \(OB,\s\up6(→))的夹角为120°,则λ的值为( )
A.±eq \f(\r(6),6) B.eq \f(\r(6),6)
C.-eq \f(\r(6),6) D.±eq \r(6)
7.在空间四边形ABCD中,则eq \(AB,\s\up8(→))·eq \(CD,\s\up8(→))+eq \(AC,\s\up8(→))·eq \(DB,\s\up8(→))+eq \(AD,\s\up8(→))·eq \(BC,\s\up8(→))的值为( )
A.-1 B.0
C.1 D.2
8.(2020·四川名校联考)如图所示,正方体ABCDA1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN=eq \f(\r(2)a,3),则MN与平面BB1C1C的位置关系是( )
相交 B.平行 C.垂直 D.不能确定
9.已知空间任意一点O和不共线的三点A,B,C,若eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→))+zeq \(OC,\s\up6(→))(x,y,z∈R),则“x=2,y=-3,z=2”是“P,A,B,C四点共面”的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
10.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=eq \r(2),AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为( )
A.(1,1,1) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),3),\f(\r(2),3),1))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(\r(2),2),1)) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),4),\f(\r(2),4),1))
11.如图,在正四棱柱ABCDA1B1C1D1中,AA1=2,AB=BC=1,动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是( )
A.eq \f(\r(2),3) B.eq \f(\r(3),3)
C.eq \f(2,3) D.eq \f(\r(5),3)
二、填空题
1.如图所示,在长方体ABCDA1B1C1D1中,O为AC的中点.用eq \(AB,\s\up6(→)),eq \(AD,\s\up6(→)),eq \(AA1,\s\up6(→))表示eq \(OC1,\s\up6(→)),则eq \(OC1,\s\up6(→))=________.
2.已知PA垂直于正方形ABCD所在的平面,M,N分别是CD,PC的中点,并且PA=AD=1.在如图所示的空间直角坐标系中,则MN=________.
3.如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=eq \f(π,3),则cs〈eq \(OA,\s\up6(→)),eq \(BC,\s\up6(→))〉的值为________.
4.已知O(0,0,0),A(1,2,1),B(2,1,2),P(1,1,2),点Q在直线OP上运动,当eq \(QA,\s\up8(→))·eq \(QB,\s\up8(→))取最小值时,点Q的坐标是________.
5.在正三棱柱ABCA1B1C1中,侧棱长为2,底面边长为1,M为BC的中点,eq \(C1N,\s\up6(→))=λeq \(NC,\s\up6(→)),且AB1⊥MN,则λ的值为________.
三 解答题
1.如图,在多面体ABCA1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=eq \r(2)AB,B1C1綊eq \f(1,2)BC,二面角A1ABC是直二面角.
求证:(1)A1B1⊥平面AA1C;
(2)AB1∥平面A1C1C.
2.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.求证:
(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.
3.在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.
4.如图,棱柱ABCDA1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.
(1)求证:BD⊥AA1;
(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2⇔n1=λn2
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α的法向量为m
l∥α
n⊥m⇔n·m=0
l⊥α
n∥m⇔n=λm
平面α,β的法向量分别为n,m
α∥β
n∥m⇔n=λm
α⊥β
n⊥m⇔n·m=0
三点(P,A,B)共线
空间四点(M,P,A,B)共面
eq \(PA,\s\up8(→))=λeq \(PB,\s\up8(→))且同过点P
eq \(MP,\s\up8(→))=xeq \(MA,\s\up8(→))+yeq \(MB,\s\up8(→))
对空间任一点O,eq \(OP,\s\up8(→))=eq \(OA,\s\up8(→))+teq \(AB,\s\up8(→))
对空间任一点O,eq \(OP,\s\up8(→))=eq \(OM,\s\up8(→))+xeq \(MA,\s\up8(→))+yeq \(MB,\s\up8(→))
对空间任一点O,eq \(OP,\s\up8(→))=xeq \(OA,\s\up8(→))+(1-x)eq \(OB,\s\up8(→))
对空间任一点O,eq \(OP,\s\up8(→))=xeq \(OM,\s\up8(→))+yeq \(OA,\s\up8(→))+(1-x-y)eq \(OB,\s\up8(→))
求夹角
设向量a,b所成的角为θ,则cs θ=eq \f(a·b,|a||b|),进而可求两异面直线所成的角
求长度(距离)
运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题
解决垂直问题
利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化为向量数量积的计算问题
相关试卷
这是一份2021年高考理科数学一轮复习:专题9.7 抛物线 题型全归纳与高效训练突破,文件包含专题97抛物线学生版docx、专题97抛物线老师版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份2021年高考理科数学一轮复习:专题9.6 双曲线 题型全归纳与高效训练突破,文件包含专题96双曲线学生版docx、专题96双曲线老师版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份2021年高考理科数学一轮复习:专题9.5 椭 圆 题型全归纳与高效训练突破,文件包含专题95椭圆学生版docx、专题95椭圆老师版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。