|试卷下载
搜索
    上传资料 赚现金
    2019年浙江省温州市龙湾区中考数学一模试卷
    立即下载
    加入资料篮
    2019年浙江省温州市龙湾区中考数学一模试卷01
    2019年浙江省温州市龙湾区中考数学一模试卷02
    2019年浙江省温州市龙湾区中考数学一模试卷03
    还剩14页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年浙江省温州市龙湾区中考数学一模试卷

    展开
    这是一份2019年浙江省温州市龙湾区中考数学一模试卷,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(共10小题;共50分)
    1. 若实数 a,b 互为相反数,则下列等式中成立的是
    A. a−b=0B. a+b=0C. ab=1D. ab=−1

    2. 以下由两个全等的 30∘ 直角三角板拼成的图形中,属于中心对称图形的是
    A. B.
    C. D.

    3. 某班 5 位学生参加中考体育测试的成绩(单位:分)分别是:50,45,36,48,50,则这组数据的众数是
    A. 36B. 45C. 48D. 50

    4. 一个 n 边形的内角和为 540∘,则 n 的值为
    A. 4B. 5C. 6D. 7

    5. 若分式 x−2x+3 的值为 0,则 x 的值是
    A. 2B. 0C. −2D. −3

    6. 小敏的讲义夹里放了大小相同的试卷共 12 页,其中语文 2 页、数学 4 页、英语 6 页,他随机地从讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率为
    A. 112B. 16C. 12D. 13

    7. 如图,小刚从山脚 A 出发,沿坡角为 α 的山坡向上走了 300 米到达 B 点,则小刚上升了
    A. 300sinα 米B. 300csα 米C. 300tanα 米D. 300tanα 米

    8. 元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买 1 个宫灯和 1 个纱灯共需 75 元,小田用 690 元购买了 6 个同样的宫灯和 10 个纱灯.若设每个宫灯 x 元,每个纱灯为 y 元,由题可列二元一次方程组得
    A. x+y=75,6x+y=690B. x+y=75,6x+10y=690
    C. x+y=75,6x+y=690D. x+y=75,10x+6y=690

    9. 如图,点 A 是射线 y=54xx≥0 上一点,过点 A 作 AB⊥x 轴于点 B,以 AB 为边在其右侧作正方形 ABCD,过点 A 的双曲线 y=kx 交 CD 边于点 E,则 DEEC 的值为
    A. 45B. 95C. 2536D. 1

    10. 如图,BC 是 ⊙O 直径,A 是圆周上一点,把 △ABC 绕点 C 顺时针旋转得 △EDC,连接 BD,当 BD∥AC 时,记旋转角为 x 度,若 ∠ABC=y 度,则 y 与 x 之间满足的函数关系式为
    A. y=180−2xB. y=12x+90C. y=2xD. y=12x

    二、填空题(共6小题;共30分)
    11. 因式分解:3x+9y= .

    12. 已知 18∘ 的圆心角所对的弧长是 π5 cm,则此弧所在圆的半径是 cm.

    13. 不等式组 12x+1≥3,x−2x−3>0 的解集是 .

    14. 如图,∠ACD 是 △ABC 的外角,CE 平分 ∠ACD,若 ∠A=50∘,∠B=35∘,则 ∠ECD 等于 ∘.

    15. 如果抛物线 L:y=ax2+bx+c(其中 a,b,c 是常数,且 a≠0)与直线 l 都经过 y 轴上的同一点,且抛物线的顶点 P 在直线 l 上,那么称该直线 l 是抛物线 L 的“梦想直线”.如果直线 l:y=nx+1(n 是常数)是抛物线 L:y=x2−2x+m(m 是常数)的“梦想直线”,那么 m+n 的值是 .

    16. 如图,已知正方形 ABCD 的边长是 ⊙O 半径的 4 倍,圆心 O 是正方形 ABCD 的中心,将纸片按图示方式折叠,使 EAʹ 恰好与 ⊙O 相切于点 Aʹ,则 tan∠AʹFE 的值为 .

    三、解答题(共8小题;共104分)
    17. 计算:
    (1)−12+27−3−10;
    (2)化简:a−3a+3+a6−a.

    18. 如图,在 △ABC 中,过点 C 作 CD∥AB,E 是 AC 的中点,连接 DE 并延长,交 AB 于点 F,交 CB 的延长线于点 G,连接 AD,CF.
    (1)求证:四边形 AFCD 是平行四边形.
    (2)若 GB=3,BC=6,BF=32,求 AB 的长.

    19. 全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
    以下是根据调查结果绘制的统计图表的一部分.
    运动形式ABCDE人数1230m549
    请你根据以上信息,回答下列问题:
    (1)接受问卷调查的共有 人,图表中的 m= ,n= ;
    (2)统计图中,A 类所对应的扇形圆心角的度数为 ;
    (3)根据调查结果,我市市民最喜爱的运动方式是 ,不运动的市民所占的百分比是 ;
    (4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有 1500 人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?

    20. 在如图所示的方格纸中,每个小正方形的边长为 1,每个小正方形的顶点都叫做格点.已知 △ABC 的三个顶点都在格点上:
    (1)按下列要求画图:
    ①过点 B 和一格点 D 画 AC 的平行线 BD;
    ②过点 C 和一格点 E 画 AB 的垂线 CE;
    ③在图中标出格点 D 和点 E.
    (2)求 △ABC 的面积.

    21. 如图,在平面直角坐标系 xOy 中,抛物线 y=−23x2+bx+c 与 x 轴交于点 A−3,0 和点 B,与 y 轴交于点 C0,2.
    (1)求抛物线的表达式,并用配方法求出顶点 D 的坐标;
    (2)若点 E 是点 C 关于抛物线对称轴的对称点,求 tan∠CEB 的值.

    22. 如图,已知 AB 是 ⊙O 的直径,P 是 BA 延长线上一点,PC 切 ⊙O 于点 C,CG 是 ⊙O 的弦,CG⊥AB,垂足为 D.
    (1)求证:∠PCA=∠ABC;
    (2)过点 A 作 AE∥PC 交 ⊙O 于点 E,交 CD 于点 F,连接 BE,若 cs∠P=45,CF=10,求 BE 的长.

    23. 中考前,某校文具店以每套 5 元购进若干套考试用具,为让利考生,该店决定售价不超过 7 元,在几天的销售中发现每天的销售数量 y(套)和售价 x(元)之间存在一次函数关系,绘制图象如图.
    (1)y 与 x 的函数关系式为 (并写出 x 的取值范围);
    (2)若该文具店每天要获得利润 80 元,则该套文具的售价为多少元?
    (3)设销售该套文具每天获利 w 元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?

    24. 如图,在 Rt△ABC 中,∠ACB=90∘,AB=5,过点 B 作 BD⊥AB,点 C,D 都在 AB 上方,AD 交 △BCD 的外接圆 ⊙O 于点 E.
    (1)求证:∠CAB=∠AEC.
    (2)若 BC=3.
    ①EC∥BD,求 AE 的长.
    ② 若 △BDC 为直角三角形,求所有满足条件的 BD 的长.
    (3)若 BC=EC=5,则 S△BCDS△ACE= .(直接写出结果即可)
    答案
    第一部分
    1. B【解析】∵ 实数 a,b 互为相反数,
    ∴a+b=0.
    2. D【解析】A.此图案是轴对称图形,不符合题意;
    B.此图案不是中心对称图形,不符合题意;
    C.此图案是轴对称图形,不符合题意;
    D.此图案是中心对称图形,符合题意.
    3. D【解析】在这组数据 50,45,36,48,50 中,50 出现了 2 次,出现的次数最多,则这组数据的众数是 50.
    4. B【解析】根据题意,得 n−2⋅180∘=540∘,解得:n=5.
    5. A
    【解析】由题意可知:x−2=0,x+3≠0,
    解得:x=2.
    6. D【解析】∵ 相同的试卷共 12 页,其中语文 2 页、数学 4 页、英语 6 页,
    ∴ 他随机地从讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率为 412=13.
    7. A【解析】在 Rt△AOB 中,∠AOB=90∘,AB=300 米,BO=AB⋅sinα=300sinα 米.
    8. B【解析】设每个宫灯 x 元,每个纱灯 y 元,
    依题意,得:x+y=75,6x+10y=690.
    9. A【解析】设点 A 的横坐标为 mm>0,则点 B 的坐标为 m,0,
    把 x=m 代入 y=54x 得:y=54m,
    则点 A 的坐标为:m,54m,线段 AB 的长度为 54m,点 D 的纵坐标为 54m,
    ∵ 点 A 在反比例函数 y=kx 上,
    ∴k=54m2,即反比例函数的解析式为:y=5m24x,
    ∵ 四边形 ABCD 为正方形,
    ∴ 四边形的边长为 54m,
    点 C,点 D 和点 E 的横坐标为 m+54m=94m,
    把 x=94m 代入 y=5m24x 得:y=59m,
    即点 E 的纵坐标为 59m,
    则 EC=59m,DE=54m−59m=2536m,DEEC=54.
    10. D
    【解析】∵BC 是 ⊙O 的直径,
    ∴∠BAC=90∘,
    又 ∵BD∥AC,
    ∴∠ABD=∠BAC=90∘,
    ∵∠ABC=y,
    ∴∠CBD=90−y,
    由旋转性质可知,∠CBD=∠CDB=90−y,
    在 △BCD 中,∠BCD=180∘−∠CBD+∠CDB,
    即:x=180−290−y,整理,得:y=12x.
    第二部分
    11. 3x+3y
    【解析】原式=3x+3y.
    12. 2
    【解析】设此弧所在圆的半径为 R cm,
    则 18π×R180=π5,
    解得,R=2cm.
    13. 4≤x<6
    【解析】
    12x+1≥3, ⋯⋯①x−2x−3>0, ⋯⋯②
    由 ① 得:
    x≥4,
    由 ② 得:
    x<6,
    不等式组的解集为:4≤x<6.
    14. 42.5
    【解析】∵∠ACD=∠A+∠B=50∘+35∘=85∘,
    又 ∵CE 平分 ∠ACD,
    ∴∠ECD=12∠ACD=42.5∘.
    15. 0
    【解析】在 y=nx+1 中,令 x=0 可求得 y=1,在 y=x2−2x+m 中,令 x=0 可得 y=m,
    ∵ 直线与抛物线都经过 y 轴上的一点,
    ∴m=1,
    ∴ 抛物线解析式为 y=x2−2x+1=x−12,
    ∴ 抛物线顶点坐标为 1,0,
    ∵ 抛物线顶点在直线上,
    ∴0=n+1,
    解得 n=−1,
    ∴m+n=0.
    16. 32
    【解析】如图,连接 AAʹ,EO,作 OM⊥AB,AʹN⊥AB,垂足分别为 M,N.
    设 ⊙O 的半径为 r,则 AM=MO=2r,设 AF=FAʹ=x,
    在 Rt△FMO 中,
    ∵FO2=FM2+MO2,
    ∴r+x2=2r−x2+2r2,
    ∴7r=6x,
    设 r=6a,则 x=7a,AM=MO=12a,FM=5a,AF=FAʹ=7a,
    ∵AʹN∥OM,
    ∴AʹNOM=FAʹFO=FNFM,
    ∴AʹN12a=7a13a=FN5a,
    ∴AʹN=8413a,FN=3513a,AN=12613a,
    ∵∠1+∠4=90∘,∠4+∠3=90∘,∠2=∠3,
    ∴∠1=∠3=∠2,
    ∴tan∠2=tan∠1=AʹNAN=23.
    ∴tan∠AʹFE=32.
    第三部分
    17. (1) −12+27−3−10=1+33−1=33.
    (2) a−3a+3+a6−a=a2−9−6a−a2=−6a−9.
    18. (1) ∵E 是 AC 的中点,
    ∴AE=CE,
    ∵AB∥CD,
    ∴∠AFE=∠CDE,
    在 △AEF 和 △CED 中,
    ∵∠AFE=∠CDE,∠AEF=∠CED,AE=CE,
    ∴△AEF≌△CEDAAS,
    ∴AF=CD,
    又 AB∥CD,即 AF∥CD,
    ∴ 四边形 AFCD 是平行四边形.
    (2) ∵AB∥CD,
    ∴△GBF∽△GCD,
    ∴GBGC=BFCD,即 33+6=32CD,
    解得:CD=92,
    ∵ 四边形 AFCD 是平行四边形,
    ∴AF=CD=92,
    ∴AB=AF+BF=92+32=6.
    19. (1) 150;45;36
    【解析】接受问卷调查的共有 30÷20%=150 人,m=150−12+30+54+9=45,n%=54150×100%=36%,
    ∴n=36.
    (2) 28.8∘
    【解析】A 类所对应的扇形圆心角的度数为 360∘×12150=28.8∘.
    (3) 散步;6%
    【解析】根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是 9150×100%=6%.
    (4) 1500×45150=450(人),
    答:估计该社区参加碧沙岗“暴走团”的大约有 450 人.
    20. (1) ①如图所示,直线 BD 即为所求;
    ②如图所示,射线 CE 即为所求;
    ③点 D 与点 E 即为所求.
    (2) △ABC 的面积为
    3×4−12×1×3−12×1×4−12×2×3=112.
    21. (1) 因为抛物线 y=−23x2+bx+c 与 x 轴交于点 A−3,0 和点 B,与 y 轴交于点 C0,2,
    所以 −23×−32+b×−3+c=0,c=2, 得 b=−43,c=2,
    所以 y=−23x2−43x+2=−23x+12+83,
    所以抛物线顶点 D 的坐标为 −1,83,
    即该抛物线的解析式为 y=−23x2−43x+2,顶点 D 的坐标为 −1,83.
    (2) 因为 y=−23x+12+83,
    所以该抛物线的对称轴为直线 x=−1,
    因为点 E 是点 C 关于抛物线对称轴的对称点,点 C0,2,
    所以点 E 的坐标为 −2,2,
    当 y=0 时,0=−23x+12+83,得 x1=−3,x2=1,
    所以点 B 的坐标为 1,0,
    设直线 BE 的函数解析式为 y=kx+n,k+n=0,−2k+n=2, 得 k=−23,b=23,
    所以直线 BE 的函数解析式为 y=−23x+23,
    当 x=0 时,y=23,
    设直线 BE 与 y 轴交于点 F,则点 F 的坐标为 0,23,
    所以 OF=23,
    因为点 C0,2,点 E−2,2,
    所以 OC=2,CE=2,
    所以 CF=2−23=43,
    所以 tan∠CEF=CECF=432=23,
    即 tan∠CEB 的值是 23.
    22. (1) 连接 OC,交 AE 于 H.
    ∵PC 是 ⊙O 的切线,
    ∴OC⊥PC,
    ∴∠PCO=90∘,
    ∴∠PCA+∠ACO=90∘,
    ∵AB 是 ⊙O 的直径,
    ∴∠ACB=90∘,
    ∴∠ACO+∠OCB=90∘,
    ∴∠PCA=∠OCB,
    ∵OC=OB,
    ∴∠OCB=∠ABC,
    ∴∠PCA=∠ABC.
    (2) 方法一:
    ∵AE∥PC,
    ∴∠CAF=∠PCA,
    ∵AB⊥CG,
    ∴AC=AG,
    ∴∠ACF=∠ABC,
    ∵∠ABC=∠PCA,
    ∴∠CAF=∠ACF,
    ∴AF=CF=10,
    ∵AE∥PC,
    ∴∠P=∠FAD,
    ∴cs∠P=cs∠FAD=45,
    在 Rt△AFD 中,cs∠FAD=ADAF,AF=10,
    ∴AD=8,
    ∴FD=AF2−AD2=6,
    ∴CD=CF+FD=16,
    在 Rt△OCD 中,设 OC=r,OD=r−8,
    r2=r−82+162,r=20,
    ∴AB=2r=40,
    ∵AB 是直径,
    ∴∠AEB=90∘,
    在 Rt△AEB 中,cs∠EAB=AEAB,AB=40,
    ∴AE=32,
    ∴BE=AB2−AE2=24.
    【解析】方法二:
    ∵AE∥PC,OC⊥PC,
    ∴OC⊥AE,∠P=∠EAO,
    ∴∠EAO+∠COA=90∘,
    ∵AB⊥CG,
    ∴∠OCD+∠COA=90∘,
    ∴∠OCD=∠EAO=∠P,
    在 Rt△CFH 中,cs∠HCF=CHCF,CF=10,
    ∴CH=8,
    在 Rt△OHA 中,cs∠OAH=AHAO=45,设 AO=5x,AH=4x,
    ∴OH=3x,OC=3x+8,
    由 OC=OA 得:3x+8=5x,x=4,
    ∴AO=20,
    ∴AB=40,
    在 Rt△ABE 中,cs∠EAB=AEAB,AB=40,
    ∴AE=32,
    ∴BE=AB2−AE2=24.
    23. (1) y=−20x+2005≤x≤7
    【解析】设 y 与 x 的函数关系式为:y=kx+b,
    把 5.5,90 和 6,80 代入 y=kx+b 得,90=5.5x+b,80=6x+b,
    解得:k=−20,b=200,
    ∴y 与 x 的函数关系式为:y=−20x+2005≤x≤7.
    (2) 根据题意得,
    x−5−20x+200=80.
    解得:
    x1=6,x2=9不合题意舍去.
    答:该套文具的售价为 6 元.
    (3) 根据题意得,w=x−5−20x+200=−20x2+300x−1000,
    当 x=−b2a=−3002×−20=7.5,
    ∵7.5>7,
    ∴ 当 x=7 时,文具店每天的获利最大,最大利润是 7−5−20×7+200=120(元),
    答:销售单价应为 7 元时,才能使文具店每天的获利最大,最大利润是 120 元.
    24. (1) ∵ 四边形 BCED 内接于 ⊙O,
    ∴∠AEC=∠DBC,
    又 ∵DB⊥AB,
    ∴∠ABC+∠DBC=90∘,
    又 ∵∠ACB=90∘,
    ∴ 在 Rt△ABC 中,∠CAB+∠ABC=90∘,
    ∴∠DBC=∠CAB,
    ∴∠CAB=∠AEC.
    (2) ① 如图 1 延长 AC 交 BD 于点 F,延长 EC 交 AB 于点 G.
    ∵ 在 Rt△ABC 中,AB=5,BC=3,
    ∴ 由勾股定理得,AC=4,
    又 ∵BC⊥AF,AB⊥BF,∠AFB=∠BFC,
    ∴Rt△AFB∽Rt△BFC,
    ∴CFBC=BCAC,
    ∴BC2=CF⋅AC,
    即 9=CF⋅4,解得,CF=94,
    又 ∵EC∥BD,
    ∴CG⊥AB,
    ∴AB⋅CG=AC⋅BC,
    即 5CG=4×3,解得,CG=125,
    又 ∵ 在 Rt△ACG 中,AG=AC2−CG2,
    ∴AG=16−14425=165,
    又 ∵EC∥DB,
    ∴∠AEC=∠ADB,
    由(1)得,∠CAB=∠AEC,
    ∴∠ADB=∠CAB,
    又 ∵∠ACB=∠DBA=90∘,
    ∴Rt△ABC∽Rt△DBA,
    ∴BCAB=ABAD,
    即 35=5AD,解得 AD=253,
    又 ∵EG∥BD,
    ∴AGAB=AEAD,
    即 1655=AE253,
    解得 AE=163 .
    ② 当 △BDC 是直角三角形时,如图 2 所示,
    ∵∠BCD=90∘,
    ∴BD 为 ⊙O 直径,
    又 ∵∠ACB=90∘,
    ∴A,C,D 三点共线,
    即 BC⊥AD 时垂足为 C,此时 C 点与 E 点重合.
    又 ∵∠DAB=∠BAC,∠ACB=ABD=90∘,
    ∴Rt△ACB∽Rt△ABD,
    ∴ACAB=ABAD,
    即 45=5AD,解得 AD=254,
    又 ∵ 在 Rt△ABD 中,BD=AD2−AB2,
    ∴BD=62516−25=154.
    (3) 819−95
    【解析】如图 3,
    由 B,C,E 都在 ⊙O 上,且 BC=CE=5,
    ∴BC=CE,
    ∴∠ADC=∠BDC,
    即 DC 平分 ∠ADB,
    过 C 作 CM⊥BD,CN⊥AD,CH⊥AB 垂足分别为 M,N,H.
    ∵ 在 Rt△ACB 中 AB=5,BC=5,
    ∴AC=25,
    又 ∵ 在 Rt△ACB 中 CH⊥AB,
    ∴AB⋅CH=AC⋅BC,
    即 5CH=25×5,
    解得,CH=2,
    ∴MB=2,
    又 ∵DC 平分 ∠ADB,
    ∴CM=CN,
    又 ∵ 在 Rt△CHB 中 BC=5,CH=2,
    ∴HB=1,
    ∴CM=CN=1,
    又 ∵ 在 △DCN 与 △DCM 中,
    ∠NDC=∠MDC,∠DNC=∠DMC,DC=DC,
    ∴△DCN 与 △DCMAAS,
    ∴DN=DM,
    设 DN=DM=x,
    则 BD=x+2,AD=x+19,
    在 Rt△ABD 中,
    由 AB2+BD2=AD2 得,25+x+22=x+192,
    解得,x=19+23,
    ∴BD=BM+MD=2+19+23=19+83,
    又由(1)得 ∠CAB=∠AEC,且 ∠ENC=∠ACB,
    ∴△ENC∽△ACB,
    ∴NCEN=ACBC=255=2,
    ∴NE=2,
    又 ∵ 在 Rt△CAN 中,CN=1,AC=25,
    ∴AN=AC2−CN2=20−1=19,
    ∴AE=AN+NE=19+2,
    又 ∵S△BCD=12BD⋅CM,S△ACE=12AE⋅CN,CM=CN,
    ∴S△BCDS△ACE=BDAE=19+832+19=819−95,
    故 S△BCDS△ACE=819−95.
    相关试卷

    2023年浙江省温州市龙湾区中考数学二模试卷(含解析): 这是一份2023年浙江省温州市龙湾区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省温州市龙湾区中考数学二模试卷(含解析): 这是一份2023年浙江省温州市龙湾区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省温州市龙湾区中考数学一模试卷(含答案解析): 这是一份2023年浙江省温州市龙湾区中考数学一模试卷(含答案解析),共24页。试卷主要包含了8×106D等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map