![优化提升专题训练(新高考) 变量间的相关关系、统计案例(含答案解析)学案01](http://img-preview.51jiaoxi.com/3/3/12083778/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![优化提升专题训练(新高考) 变量间的相关关系、统计案例(含答案解析)学案02](http://img-preview.51jiaoxi.com/3/3/12083778/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![优化提升专题训练(新高考) 变量间的相关关系、统计案例(含答案解析)学案03](http://img-preview.51jiaoxi.com/3/3/12083778/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
优化提升专题训练(新高考) 变量间的相关关系、统计案例(含答案解析)学案
展开 变量间的相关关系、统计案例
【知识框图】
【自主热身,归纳总结】
1、【2020年高考全国Ⅰ卷理数】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
【答案】D
【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.
故选:D.
2、(2020·山东潍坊·高三月考)为了解某社区居民的2019年家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
收入x(万元)
8.2
8.6
10.0
11.3
11.9
支出y(万元)
6.2
7.5
8.0
t
9.8
根据上表可得回归直线方程,则t=_______.
【答案】8.5
【解析】分别求出收入和支出的平均数,
可得:,
,
代入可得:
,
解得:,
故答案为:.
3、(2020·山东济南外国语学校高三月考)下列说法正确的是( )
A.将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a倍
B.设有一个回归方程,变量x增加1个单位时,y平均减少5个单位
C.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱
D.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),则P(ξ>1)=0.5
【答案】BD
【解析】对于选项A:将一组数据中的每个数据都乘以同一个非零常数a后,方差变为原来的a2倍,故错误.
对于选项B:若有一个回归方程,变量x增加1个单位时,,故y平均减少5个单位,正确.
对于选项C:线性相关系数|r|越大,两个变量的线性相关性越强;反之,线性相关性越弱,错误.
对于选项D:在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),由于正态曲线关于x=1对称,则P(ξ>1)=0.5,正确.
故选:BD
4、(2020届山东省德州市高三上期末)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人
附表:
附:
A. B. C. D.
【答案】BC
【解析】设男生的人数为,根据题意列出列联表如下表所示:
男生
女生
合计
喜欢抖音
不喜欢抖音
合计
则,
由于有的把握认为是否喜欢抖音和性别有关,则,
即,得,
,则的可能取值有、、、,
因此,调查人数中男生人数的可能值为或.
故选:BC.
5、(2020届山东省烟台市高三上期末)某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出( )
满意
不满意
男
30
20
女
40
10
0.100
0.050
0.010
2.706
3.841
6.635
A.该学校男生对食堂服务满意的概率的估计值为
B.调研结果显示,该学校男生比女生对食堂服务更满意
C.有95%的把握认为男、女生对该食堂服务的评价有差异
D.有99%的把握认为男、女生对该食堂服务的评价有差异
【答案】AC
【解析】对于选项A,该学校男生对食堂服务满意的概率的估计值为,故A正确;
对于选项B,该学校女生对食堂服务满意的概率的估计值为,故B错误;
因为,所以有的把握认为男、女生对该食堂服务的评价有差异,故C正确,D错误
故选:AC
【问题探究,变式训练】
题型一、线性回归方程
例1、【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由..
【解析】(1)利用模型①,
该地区2018年的环境基础设施投资额的预测值为(亿元).
利用模型②,
该地区2018年的环境基础设施投资额的预测值为(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
变式1、(2020·博兴县第三中学高三月考)某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.
表中,
(1)根据散点图判断:与哪一个模型更适合作为该图书每册的成本费y与印刷数量x的回归方程?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(结果精确到0.01);
(3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)
附:对于一组数据(ω1,v1),(ω2,v2),…,(ωn,vn),其回归直线的斜率和截距的最小二乘估计分别为,.
【解析】(1)由散点图判断,更适合作为该图书每册的成本费y(单位:元)与印刷数量(单位:千册)的回归方程.
(2)令,先建立y关于u的线性回归方程,
由于,
所以,
所以y关于u的线性回归方程为,
所以y关于x的回归方程为
(3)假设印刷千册,依题意得,
解得,
所以至少印刷11120册才能使销售利润不低于80000元.
变式2、(2020·山东济南外国语学校高三月考)根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.
(1)依据数据的散点图可以看出,可用线性回归模型拟合与的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);
(2)求关于的回归方程,并预测液体肥料每亩使用量为千克时,西红柿亩产量的增加量约为多少?
附:相关系数公式,回归方程中斜率和截距的最小二乘估计公式分别为:,.
【答案】(1),可用线性回归模型拟合与的关系;(2) ,预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为9.9百千克.
【解析】
(1)因为,.
,
,
.
.
∴可用线性回归模型拟合与的关系;
(2),.
∴.
当时,.
∴预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为9.9百千克
题型二、 独立性检验
例2、(2020·山东海南省高考真题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
【解析】(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,
所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;
(2)由所给数据,可得列联表为:
合计
64
16
80
10
10
20
合计
74
26
100
(3)根据列联表中的数据可得
,
因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
变式1、(2020·四川省新津中学高三开学考试(文))为了解使用手机是否对学生的学习有影响,某校随机抽取100名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):
使用手机
不使用手机
总计
学习成绩优秀
10
40
学习成绩一般
30
总计
100
(1)补充完整所给表格,并根据表格数据计算是否有99.9%的把握认为学生的学习成绩与使用手机有关;
(2)现从上表中不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,再从这6人中随机抽取3人,求其中学习成绩优秀的学生恰有2人的概率.
参考公式:,其中.
参考数据:
0.050
0.010
0.001
3.841
6.635
10.828
【答案】(1)表格见解析,有99.9%的把握认为学生的学习成绩与使用手机有关,(2)
【解析】
(1)
使用手机
不使用手机
总计
学习成绩优秀
10
40
50
学习成绩一般
30
20
50
总计
40
60
100
所以有99.9%的把握认为学生的学习成绩与使用手机有关
(2)从上表中不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,
其中学习成绩优秀4人,学习成绩一般2人,
从这6人中随机抽取3人,有种取法,
其中学习成绩优秀的学生恰有2人有种取法,
因此所求概率为
变式2、【2020年高考全国III卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
12
3(轻度污染)
6
7
8
4(中度污染)
7
2
0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400
人次>400
空气质量好
空气质量不好
附:K2=,
P(K2≥k)
0.050 0.010 0.001
k
3.841 6.635 10.828
.
【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:
空气质量等级
1
2
3
4
概率的估计值
0.43
0.27
0.21
0.09
(2)一天中到该公园锻炼的平均人次的估计值为
.
(3)根据所给数据,可得列联表:
人次≤400
人次>400
空气质量好
33
37
空气质量不好
22
8
根据列联表得
.
由于,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
变式3、【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi) (i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数,.
【解析】(1)由已知得样本平均数,从而该地区这种野生动物数量的估计值为60×200=12000.
(2)样本的相关系数
.
(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.
理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.
题型三、统计案例、线性回归分析与概率的综合
例3、(2020·山东高三期中)网络购物已经成为人们的一种生活方式.某购物平台为了给顾客提供更好的购物体验,为入驻商家设置了积分制度,每笔购物完成后,买家可以根据物流情况、商品质量等因素对商家做出评价,评价分为好评、中评和差评平台规定商家有50天的试营业时间,期间只评价不积分,正式营业后,每个好评给商家计1分,中评计0分,差评计分,某商家在试营业期间随机抽取100单交易调查了其商品的物流情况以及买家的评价情况,分别制成了图1和图2.
(1)通常收件时间不超过四天认为是物流迅速,否则认为是物流迟缓;
请根据题目所给信息完成下面列联表,并判断能否有的把握认为“获得好评”与物流速度有关?
好评
中评或差评
合计
物流迅速
物流迟缓
30
合计
(2)从正式营业开始,记商家在每笔交易中得到的评价得分为.该商家将试营业50天期间的成交情况制成了频数分布表(表1),以试营业期间成交单数的频率代替正式营业时成交单数发生的概率.
表1
成交单数
36
30
27
天数
10
20
20
(Ⅰ)求的分布列和数学期望;
(Ⅱ)平台规定,当积分超过10000分时,商家会获得“诚信商家”称号,请估计该商家从正式营业开始,1年内(365天)能否获得“诚信商家”称号
附:
参考数据:
0.150
0.100
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
【答案】(1)见解析,有的把握认为“获得好评”与物流速度有关.
(2)(Ⅰ)见解析,0.7(Ⅱ)该商家在1年内不能获得“诚信商家”称号.
【解析】
(1)由题意得
好评
中评或差评
合计
物流迅速
50
5
55
物流迟缓
30
15
45
合计
80
20
100
,
所以有的把握认为“获得好评”与物流速度有关.
(2)(Ⅰ)由题意可知,的取值可能是1,0,,
每位买家给商家作出好评、中评、差评的概率分别为0.8,0.1,0.1,
所以的分布列为
1
0
0.8
0.1
0.1
所以;
(Ⅱ)设商家每天的成交量为,则的取值可能为27,30,36,
所以的分布列为
27
30
36
0.4
0.4
0.2
所以,
所以商家每天能获得的平均积分为,
商家一年能获得的积分:,
所以该商家在1年内不能获得“诚信商家”称号.
变式1、(2020届山东省潍坊市高三上期末)读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于分钟的学生称为“读书之星”,日均课余读书时间低于分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于分钟的有人
(1)求的值;
(2)根据已知条件完成下面的列联表,并判断是否有以上的把握认为“读书之星”与性别有关?
非读书之星
读书之星
总计
男
女
总计
(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取名学生,每次抽取名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量,求的分布列和期望
附:,其中.
【解析】(1)
解得:,
所以.
(2)因为,所以“读书之星”有
从而列联表如下图所示:
非读书之星
读书之星
总计
男
女
总计
将列联表中的数据代入公式计算得
因为,所以没有以上的把握认为“读书之星”与性别有关
(3)将频率视为概率,即从该地区学生中抽取一名学生是“读书之星”的概率为.
由题意可知
所以
,
所以的分布列为
故.
变式2、
(2020·济南市历城第二中学高三月考)共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有是“年轻人”.
(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?
年轻人
非年轻人
合计
经常使用单车用户
120
不常使用单车用户
80
合计
160
40
200
使用共享单车情况与年龄列联表
(2)将(1)中频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量,求的分布列与期望.
参考数据:独立性检验界值表
0.15
0.10
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
其中,,
【答案】(1)列联表见解析,有的把握可以认为经常使用共享单车与年龄有关;(2)分布列见解析,数学期望为.
【解析】
(1)补全的列联表如下:
年轻人
非年轻人
合计
经常使用共享单车
100
20
120
不常使用共享单车
60
20
80
合计
160
40
200
于是,,,,
∴,
即有的把握可以认为经常使用共享单车与年龄有关.
(2)由(1)的列联表可知,
经常使用共享单车的“非年轻人”占样本总数的频率为,
即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1,
∵,
∴,
,,
∴的分布列为
0
1
2
3
0.729
0.243
0.027
0.001.
∴的数学期望.
优化提升专题训练(新高考)利用导数研究函数的性质(含答案解析)学案: 这是一份优化提升专题训练(新高考)利用导数研究函数的性质(含答案解析)学案,共12页。学案主要包含了知识框图,自主热身,归纳总结,名师点睛,问题探究,变式训练,2019年高考江苏,2018年高考江苏,2020年高考北京等内容,欢迎下载使用。
优化提升专题训练(新高考) 导数的综合运用(含答案解析)学案: 这是一份优化提升专题训练(新高考) 导数的综合运用(含答案解析)学案,共17页。学案主要包含了知识框图,自主热身,归纳总结,2019年高考浙江,问题探究,变式训练等内容,欢迎下载使用。
优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案: 这是一份优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案,共20页。学案主要包含了知识框图,自主热身,归纳总结,2018年高考浙江卷,问题探究,变式训练,2020年高考浙江,2020年高考江苏等内容,欢迎下载使用。