|学案下载
搜索
    上传资料 赚现金
    优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案
    立即下载
    加入资料篮
    优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案01
    优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案02
    优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案

    展开
    这是一份优化提升专题训练(新高考) 圆锥曲线中的椭圆问题(含答案解析)学案,共20页。学案主要包含了知识框图,自主热身,归纳总结,2018年高考浙江卷,问题探究,变式训练,2020年高考浙江,2020年高考江苏等内容,欢迎下载使用。

     圆锥曲线中的椭圆问题
    【知识框图】





    【自主热身,归纳总结】
    1、【2019年高考北京卷理数】已知椭圆(a>b>0)的离心率为,则
    A.a2=2b2 B.3a2=4b2
    C.a=2b D.3a=4b
    【答案】B
    【解析】椭圆的离心率,化简得,
    故选B.
    2、【2019年高考全国Ⅲ卷理数】设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为___________.
    【答案】
    【解析】由已知可得,
    ,∴.
    设点的坐标为,则,
    又,解得,
    ,解得(舍去),
    的坐标为.
    3、【2018年高考浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.
    【答案】
    【解析】设,,
    由得,,
    所以,
    因为,在椭圆上,所以,,
    所以,
    所以,
    与对应相减得,,
    当且仅当时取最大值.
    4、.(2020届浙江省杭州市建人高复高三4月模拟)已知方程,若该方程表示椭圆方程,则的取值范围是_______;
    【答案】或
    【解析】
    因为方程,
    所以,
    所以有即或
    故答案为:或
    5、(2017无锡期末)设点P是有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若e2=3e1,则e1=________.
    【答案】 
    【解析】不妨设F1,F2分别是左、右焦点,椭圆的长半轴为a1,双曲线的实半轴为a2,P为椭圆与双曲线在第一象限内的交点,则根据椭圆和双曲线的定义可得解得因为PF1⊥PF2,所以PF+PF=F1F,即(a1+a2)2+(a1-a2)2=(2c)2,化简得a+a=2c2,所以2+2=2,即+=2,又因为e2=3e1,所以e=,故e1=.
    6、(2020届浙江省嘉兴市3月模拟)已知椭圆的左、右焦点分别是,,点是椭圆上位于轴上方的一点,若直线的斜率为,且,则椭圆的离心率为________.
    【答案】.
    【解析】设,由直线的斜率为,知,且,即得,
    由及椭圆定义知,
    由余弦定理即可得,,即,化简得,
    故或3(舍)
    即.

    故答案为:

    【问题探究,变式训练】
    题型一、椭圆的离心率
    例1、【2018年高考全国Ⅱ理数】已知,是椭圆的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为
    A. B.
    C. D.
    【答案】D
    【解析】因为为等腰三角形,,所以,
    由的斜率为可得,
    所以,,
    由正弦定理得,
    所以,
    所以,,故选D.
    变式1、【江苏省南通市2019-2020学年高三上学期期初】已知,分别为椭圆:的左,右焦点,点,分别是椭圆的右顶点和上顶点,若直线上存在点,使得,则椭圆的离心率的取值范围是______.
    【答案】
    【解析】,即在以为直径的圆上,即.
    直线:,即,圆心到直线的距离,
    即,即,所以解得.
    故答案为:.
    变式2、(2020届浙江省高中发展共同体高三上期末)已知椭圆的内接的顶点为短轴的一个端点,右焦点,线段中点为,且,则椭圆离心率的取值范围是___________.
    【答案】
    【解析】
    由题意可设,,线段中点为,且,
    可得为的重心,设,,
    由重心坐标公式可得,,,
    即有的中点,可得,,
    由题意可得点在椭圆内,可得,
    由,可得,即有.
    故答案为:.
    变式3、(2020届浙江省“山水联盟”高三下学期开学)设椭圆的标准方程为,若斜率为1的直线与椭圆相切同时亦与(为椭圆的短半轴)相切,记椭圆的离心率为,则__________.
    【答案】
    【解析】设切线方程为,代入椭圆方程可得:.
    因为相切,
    由直线与圆相切,可得:,或(舍去).
    则有,因为,
    所以可得.
    故答案为:.
    题型二、椭圆的方程
    例2、【2019年高考全国Ⅰ卷理数】已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
    A. B.
    C. D.
    【答案】B
    【解析】法一:如图,由已知可设,则,
    由椭圆的定义有.
    在中,由余弦定理推论得.
    在中,由余弦定理得,解得.
    所求椭圆方程为,故选B.

    法二:由已知可设,则,
    由椭圆的定义有.
    在和中,由余弦定理得,
    又互补,,两式消去,得,解得.所求椭圆方程为,故选B.
    变式1、【2020届江苏省南通市高三下学期3月开学考试】若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是
    【答案】
    【解析】∵点(1,)在圆外,过点(1,)与圆相切的一条直线为x=1,且直线AB恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c=1,设点P(1,),连接OP,则OP⊥AB,∵kOP=,∴kAB=-2.又直线AB过点(1,0),∴直线AB的方程为2x+y-2=0,∵点(0,b)在直线AB上,∴b=2,又c=1,∴a2=5,故椭圆方程是+=1.
    变式2、(2018常州期末)在平面直角坐标系xOy中,设椭圆+=1(a>b>0)的离心率是e,定义直线y=±为椭圆的“类准线”.已知椭圆C的“类准线”方程为y=±2,长轴长为4.
    (1) 求椭圆C的方程;
    (2) 点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:x2+y2=3的切线l,过点O且垂直于OP的直线与l交于点A,问点A是否在椭圆C上?证明你的结论.
    规范解答 (1) 由题意得又a2=b2+c2,解得b=,c=1,(4分)
    所以椭圆C的方程为+=1.(5分)
    (2) 点A在椭圆C上.证明如下:
    设切点为Q(x0,y0),x0≠0,则x+y=3,切线l的方程为x0x+y0y-3=0,
    当yP=2时,xP=,即P,2,
    则kOP==,(7分)
    所以kOA=,直线OA的方程为y=x.(9分)
    由解得
    即A,,(11分)
    因为+

    ==1,
    所以点A的坐标满足椭圆C的方程.(14分)
    当yP=-2时,同理可得点A的坐标满足椭圆C的方程,
    所以点A在椭圆C上.(16分)
    变式3、【2020年高考全国Ⅱ卷理数】已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且.
    (1)求C1的离心率;
    (2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
    【解析】(1)由已知可设的方程为,其中.
    不妨设在第一象限,由题设得的纵坐标分别为,;的纵坐标分别为,,故,.
    由得,即,解得(舍去),.
    所以的离心率为.
    (2)由(1)知,,故,
    设,则,,故.①
    由于的准线为,所以,而,故,代入①得,即,解得(舍去),.
    所以的标准方程为,的标准方程为.
    题型三、椭圆中的最值问题
    例3、【2020年高考浙江】如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于点M(B,M不同于A).
    (Ⅰ)若,求抛物线的焦点坐标;
    (Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.

    【解析】(Ⅰ)由得的焦点坐标是.
    (Ⅱ)由题意可设直线,点.
    将直线的方程代入椭圆得,
    所以点的纵坐标.
    将直线的方程代入抛物线得,
    所以,解得,
    因此.
    由得,
    所以当,时,取到最大值
    变式1、【2020年高考江苏】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.

    (1)求的周长;
    (2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
    (3)设点M在椭圆E上,记与的面积分别为S1,S2,若,求点M的坐标.
    【解析】(1)椭圆的长轴长为,短轴长为,焦距为,
    则.
    所以的周长为.
    (2)椭圆的右准线为.
    设,
    则,

    在时取等号.
    所以的最小值为.

    (3)因为椭圆的左、右焦点分别为,点在椭圆上且在第一象限内,,
    则.
    所以直线
    设,因为,所以点到直线距离等于点到直线距离的3倍.
    由此得,
    则或.
    由得,此方程无解;
    由得,所以或.
    代入直线,对应分别得或.
    因此点的坐标为或.
    变式2、【2020年新高考全国Ⅱ卷】已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
    (1)求C的方程;
    (2)点N为椭圆上任意一点,求△AMN的面积的最大值.
    【解析】(1)由题意可知直线AM的方程为:,即.
    当y=0时,解得,所以a=4,
    椭圆过点M(2,3),可得,
    解得b2=12.
    所以C的方程:.
    (2)设与直线AM平行的直线方程为:,
    如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.

    联立直线方程与椭圆方程,
    可得:,
    化简可得:,
    所以,即m2=64,解得m=±8,
    与AM距离比较远的直线方程:,
    直线AM方程为:,
    点N到直线AM的距离即两平行线之间的距离,
    利用平行线之间的距离公式可得:,
    由两点之间距离公式可得.
    所以△AMN的面积的最大值:.
    变式3、【2019年高考全国Ⅱ卷理数】已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
    (1)求C的方程,并说明C是什么曲线;
    (2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
    (i)证明:是直角三角形;
    (ii)求面积的最大值.
    【答案】(1)见解析;(2)(i)见解析;(ii).
    【解析】(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.
    (2)(i)设直线PQ的斜率为k,则其方程为.
    由得.
    记,则.
    于是直线的斜率为,方程为.
    由得
    .①
    设,则和是方程①的解,故,由此得.
    从而直线的斜率为.
    所以,即是直角三角形.
    (ii)由(i)得,,所以△PQG的面积.
    设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.
    因为在[2,+∞)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.
    因此,△PQG面积的最大值为.
    题型四、椭圆中的定点问题
    例4、【2020年高考全国Ⅰ卷理数】已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
    (1)求E的方程;
    (2)证明:直线CD过定点.
    【解析】(1)由题设得A(–a,0),B(a,0),G(0,1).
    则,=(a,–1).由=8得a2–1=8,即a=3.
    所以E的方程为+y2=1.
    (2)设C(x1,y1),D(x2,y2),P(6,t).
    若t≠0,设直线CD的方程为x=my+n,由题意可知–3 由于直线PA的方程为y=(x+3),所以y1=(x1+3).
    直线PB的方程为y=(x–3),所以y2=(x2–3).
    可得3y1(x2–3)=y2(x1+3).
    由于,故,可得,
    即①
    将代入得
    所以,.
    代入①式得
    解得n=–3(含去),n=.
    故直线CD的方程为,即直线CD过定点(,0).
    若t=0,则直线CD的方程为y=0,过点(,0).
    综上,直线CD过定点(,0).
    变式1、【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1).
    (1)求抛物线C的方程及其准线方程;
    (2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
    【答案】(1)抛物线的方程为,准线方程为;(2)见解析.
    【解析】(1)由抛物线经过点,得.
    所以抛物线的方程为,其准线方程为.
    (2)抛物线的焦点为.
    设直线的方程为.
    由得.
    设,则.
    直线的方程为.
    令,得点A的横坐标.
    同理得点B的横坐标.
    设点,则,



    .
    令,即,则或.
    综上,以AB为直径的圆经过y轴上的定点和.
    变式2、(2019·山东高三月考)已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.

    (1)求的离心率及方程;
    (2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
    【答案】(1),; (2)存在点,且.
    【解析】
    (1)由题意可知,,则,
    又的周长为8,所以,即,
    则,.
    故的方程为.
    (2)假设存在点,使得为定值.
    若直线的斜率不存在,直线的方程为,,,
    则.
    若直线的斜率存在,设的方程为,
    设点,,联立,得,
    根据韦达定理可得:,,
    由于,,

    因为为定值,所以,
    解得,故存在点,且.

    题型五、椭圆中的定值问题
    例5、【2020年新高考全国Ⅰ卷】已知椭圆C:的离心率为,且过点A(2,1).
    (1)求C的方程:
    (2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
    【解析】(1)由题设得,,解得,.
    所以的方程为.
    (2)设,.
    若直线与轴不垂直,设直线的方程为,
    代入得.
    于是.①
    由知,故,
    可得.
    将①代入上式可得.
    整理得.
    因为不在直线上,所以,故,.
    于是的方程为.
    所以直线过点.
    若直线与轴垂直,可得.
    由得.
    又,可得.解得(舍去),.
    此时直线过点.
    令为的中点,即.
    若与不重合,则由题设知是的斜边,故.
    若与重合,则.
    综上,存在点,使得为定值.
    变式、【2018年高考北京卷理数】已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
    (1)求直线l的斜率的取值范围;
    (2)设O为原点,,,求证:为定值.
    【答案】(1)(-∞,-3)∪(-3,0)∪(0,1);(2)见解析.
    【解析】(1)因为抛物线y2=2px经过点P(1,2),
    所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
    由题意可知直线l的斜率存在且不为0,
    设直线l的方程为y=kx+1(k≠0).
    由得.
    依题意,解得k<0或0 又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.
    所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
    (2)设A(x1,y1),B(x2,y2).
    由(1)知,.
    直线PA的方程为.
    令x=0,得点M的纵坐标为.
    同理得点N的纵坐标为.
    由,得,.
    所以.
    所以为定值.
    相关学案

    优化提升专题训练(新高考) 导数的综合运用(含答案解析)学案: 这是一份优化提升专题训练(新高考) 导数的综合运用(含答案解析)学案,共17页。学案主要包含了知识框图,自主热身,归纳总结,2019年高考浙江,问题探究,变式训练等内容,欢迎下载使用。

    优化提升专题训练(新高考) 等差数列与等比数列基本量的问题(含答案解析)学案: 这是一份优化提升专题训练(新高考) 等差数列与等比数列基本量的问题(含答案解析)学案,共12页。学案主要包含了知识框图,自主热身,归纳总结,2019年高考江苏卷,问题探究,变式训练,2020年高考浙江,2019年高考浙江卷等内容,欢迎下载使用。

    优化提升专题训练(新高考) 运用空间向量研究立体几何问题(含答案解析)学案: 这是一份优化提升专题训练(新高考) 运用空间向量研究立体几何问题(含答案解析)学案,共26页。学案主要包含了知识框图,自主热身,归纳总结,2020年高考天津,问题探究,变式训练,2020年高考浙江,2019年高考浙江卷等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map