专题03 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版
展开专题3 因动点产生的直角三角形问题
【类型综述】
解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.
一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.
有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.
解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.
如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.
【方法揭秘】
我们先看三个问题:
1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?
2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?
3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.
图1 图2 图3
如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.
如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.
我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.
如果作BD⊥y轴于D,那么△AOC∽△CDB.[来源:]
[来源:Zxxk.Com]
设OC=m,那么.
这个方程有两个解,分别对应图中圆与y轴的两个交点.
【典例分析】[来源:ZXXK]
例1 如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′、B′.
(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
图1 图2
例2如图1,二次函数y=x2+bx+c的图象与x轴交于A(-1, 0)、B(3, 0)两点,与y轴交于点C,连结BC.动点P以每秒1个单位长度的速度从点A向点B运动,动点Q以每秒个单位长度的速度从点B向点C运动,P、Q两点同时出发,连结PQ,当点Q到达点C时,P、Q两点同时停止运动.设运动的时间为t秒.
(1)求二次函数的解析式;
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点,若存在,求出点N的坐标与t的值;若不存在,请说明理由.
图1 图2
例3 如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G.
(1)当CE=3时,求S△CEF∶S△CAF的值;
(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;
(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.
图1
例4如图1,二次函数y=a(x2-2mx-3m2)(其中a、m是常数,且a>0,m>0)的图像与x轴分别交于A、B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图像上,CD//AB,联结AD.过点A作射线AE交二次函数的图像于点E,AB平分∠DAE.
(1)用含m的式子表示a;
(2)求证:为定值;[来源:]
(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G,联结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
图1
例5如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A、B、C的坐标;
(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.
图1
例6如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
图1
【变式训练】
1.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)( )
A.2个 B.3个 C.4个 D.5个
2.如图,在矩形中,是边上的一个动点,当点在(不含两点)上运动时,若是以为斜边的直角三角形,则等于( )
A. B.或 C. D.或
3.如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为( )
A.,1,2 B.,,2 C.,,1 D.,2[来源:ZXXK]
4.如图,是的直径,弦,是弦的中点,.若动点以的速度从点出发沿着方向运动,设运动时间为,连结,当是直角三角形时,(s)的值为
A. B.1 C.或1 D.或1 或
5.若D点坐标(4,3),点P是x轴正半轴上的动点,点Q是反比例函数图象上的动点,若△PDQ为等腰直角三角形,则点P的坐标是________.
6.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE的长为______.
7.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P,Q同时出发,用t(s)表示移动的时间,当t=________s时,△POQ是等腰三角形;当t=_______s时,△POQ是直角三角形.
8.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为___________.
9.如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
10.如图所示,已知抛物线经过点 A (-2,0)、 B (4,0)、 C (0,-8),抛物线 y = a x 2 + b x + c (a≠0)与直线 y = x -4交于 B , D 两点.
(1)求抛物线的解析式并直接写出 D 点的坐标;
(2)点 P 为抛物线上的一个动点,且在直线 BD 下方,试求出△ BDP 面积的最大值及此时点 P 的坐标;
(3)点 Q 是线段 BD 上异于 B 、 D 的动点,过点 Q 作 QF ⊥ x 轴于点 F , 交抛物线于点 G . 当△ QDG 为直角三角形时,求点 Q 的坐标.
11.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
12.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x﹣4交于B,D两点
(1)求抛物线的解析式并直接写出D点的坐标;
(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;
(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.
13.如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,;
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.
14.(本小题满分12分)已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0).
(1)求抛物线的解析式;
(2)动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.
15.如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
16.如图,直线与抛物线相交于和,点P是线段AB上异于A、B的动点,过点P作轴于点D,交抛物线于点C.
求抛物线的解析式;
是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
连接AC,直接写出为直角三角形时点P的坐标.
17.如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求该抛物线的对称轴和线段AB的长;
(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;
(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
18.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
19.已知,是边长的等边三角形,动点以的速度从点出发,沿线段向点运动.请分别解决下面四种情况:
()如图,设点的运动时间为,那么__________时,是直角三角形;
()如图,若另一动点从点出发,沿线段向点运动,如果动点、都以的速度同时出发.设运动时间为,那么为何值时,是直角三角形?
()如图,若另一动点从点出发,沿射线方向运动.连接交于.如果动点、都以的速度同时出发.设运动时间为,那么为何值时,是等腰三角形?
()如图,若另一动点从点出发,沿射线方向运动,连接交于,连接.如果动点、都以的速度同时出发.请你猜想:在点、的运动过程中,和的面积有什么关系?并说明理由.
20.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.
(1)求直线AB的函数解析式;
(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版): 这是一份专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。
专题13 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版: 这是一份专题13 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版,文件包含专题13几何中的最值与定值问题-版突破中考数学压轴之学霸秘笈大揭秘学生版doc、专题13几何中的最值与定值问题-版突破中考数学压轴之学霸秘笈大揭秘教师版doc等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
专题10 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版: 这是一份专题10 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版,文件包含专题10二次函数与线段关系及最值定值问题-版突破中考数学压轴之学霸秘笈大揭秘学生版doc、专题10二次函数与线段关系及最值定值问题-版突破中考数学压轴之学霸秘笈大揭秘教师版doc等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。