专题06 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版
展开专题06 二次函数与圆的综合问题
【典例分析】
例1 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.
(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);
①求此抛物线的函数解析式;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;
(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.
例2已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.
(1)求抛物线的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
例3如图,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.
(1)求D点的坐标和圆D的半径;
(2)求sin ∠ACB的值和经过C、A、B三点的抛物线对应的函数表达式;
(3)设抛物线的顶点为F,证明直线AF与圆D相切.
例4如图,已知二次函数(m>0)的图象与x轴交于A、B两点.[来源:Z*X*X*K]
(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.
例5已知圆P的圆心在反比例函数 图象上,并与x轴相交于A、B两点. 且始终与y轴相切于定点C(0,1).
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.
例6如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
【变式训练】
1.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.
2.如图,抛物线与x轴交于O、A两点.半径为1的动圆⊙P,圆心从O点出发沿抛物线向靠近点A的方向移动; 半径为2的动圆⊙Q,圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等, 当运动到P、Q两点重合时同时停止运动.设点P的横坐标为t.若⊙P与⊙Q相离,则t的取值范围是 .
3.如图,抛物线过点 A(2,0)、B(6,0)、C(1, ),平行于x轴的直线CD交抛物线于C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是_____________.
4.如图,抛物线y=x2-x与x轴交于O,A两点. 半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动. 两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动. 设点P的横坐标为t .
[来源:Z。xx。k.Com]
(1)点Q的横坐标是 (用含t的代数式表示);
(2)若⊙P与⊙Q 相离,则t的取值范围是 .
6.如图,圆B切y轴于原点O,过定点A(-,0)作圆B的切线交圆于点P,已知tan∠PAB=,抛物线C经过A、P两点。
(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.
7.如图,将圆C放置在直角坐标系中,圆C经过原点O以及点A(2,0),点B(0,)。
(1)求圆心的坐标以及圆C的半径; (4分)
(2)设弧OB的中点为D,请求出同时经过O,A,D三个点的抛物线解析式。
并判断该抛物线的顶点是否在圆C上,说明理由。(6分)
(3)若(2)中的抛物线上存在点P(m,n),满足∠APB为钝角,直接写出m的取值范围。(2分)
8.如图,已知抛物线(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求MF的值.
9.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴交于点O、M.对称轴为直线x=2,以OM为直径作圆A,以OM的长为边长作菱形ABCD,且点B、C在第四象限,点C在抛物线对称轴上,点D在y轴负半轴上;
(1)求证:4a+b=0;[来源:Zxxk.Com]
(2)若圆A与线段AB的交点为E,试判断直线DE与圆A的位置关系,并说明你的理由;
(3)若抛物线顶点P在菱形ABCD的内部且∠OPM为锐角时,求a的取值范围.
10.已知一元二次方程的一根为.
求关于的函数关系式;
求证:抛物线与轴有两个交点;
设抛物线与轴交于、两点(、不重合),且以为直径的圆正好经过该抛物线的顶点,求,的值.
11.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(-8,0),B(0,-6)两点.
(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,为原点,点坐标为,点坐标为,以为直径的圆与轴的负半轴交于点.
(1)求图象经过,,三点的抛物线的解析式;
(2)设点为所求抛物线的顶点,试判断直线与的关系,并说明理由.
[来源:]
13.如图,已知的圆心在x轴上,且经过、两点,抛物线(m>0)经过A、B两点,顶点为P。
(1)求抛物线与y轴的交点D的坐标(用m的代数式表示);
14.如图,抛物线与x轴的两个交点A、B,与y轴交于点C,A点坐标为(4,0),C点坐标(0,-4).
(1)求抛物线的解析式;
(2)用直尺和圆规作出△ABC的外接圆⊙M,(不写作法,保留作图痕迹),并求⊙M的圆心M的坐标;
15.已知直线与抛物线交于点A(1,),与轴交于点C.
(1)求抛物线的解析式和点C的坐标;
(2)把(1)中的抛物线向右平移2个单位,再向上平移个单位(>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆恰好以CQ为直径,求的值;
(3)如图,把抛物线向右平移2个单位,再向上平移个单位(>0),抛物线与轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值?若存在,请求出这个最小值和此时的值;若不存在,请说明理由.
16.已知抛物线的顶点为(0,4)且与x轴交于(﹣2,0),(2,0).
(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.
17.已知抛物线y=ax2+bx+c ,当x=0时,有最小值为1 ;且在直线y=2上截得的线段长为4 .
(1)求此抛物线的解析式;
(2)若点P是抛物线的任意一点,记点P到X轴的距离为d1,点P 与点 F (0,2)的距离为d2,猜想d1、 d2的大小关系,并证明;
(3)若直线PF交此抛物线于另一点Q(异于P点)。 试判断以PQ为直径的圆与x 轴的位置关系,并说明理由。
18.在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.
(1)求抛物线的解析式;
(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;
(3)将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点的坐标.
19.我们把一个半圆与抛物线的一部分合成的封闭图形称为“果圆”.如图,A,B,C,D是“果圆”与坐标轴的交点,点D的坐标为(0,8),且AB=6,点P是以AB为直径的半圆的圆心,P的坐标为(1,0),连接DB,AD,动点E,F分别从A,O两点出发,以相同的速度沿x轴正方向运动,当F到达B点时两点同时停止,过点F作FG∥BD交AD于点G.[来源:+网Z+X+X+K]
(1)求“果圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)在“果圆”上是否存在一点H,使得△DBH为直角三角形?若存在,求出H点的坐标;若不存在,说明理由;
(3)设M,N分别是GE,GF的中点,求在整个运动过程中,MN所扫过的图形面积.
专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版): 这是一份专题01 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘(学生版),共12页。
专题13 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版: 这是一份专题13 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版,文件包含专题13几何中的最值与定值问题-版突破中考数学压轴之学霸秘笈大揭秘学生版doc、专题13几何中的最值与定值问题-版突破中考数学压轴之学霸秘笈大揭秘教师版doc等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
专题12 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版: 这是一份专题12 因动点产生的面积问题-版突破中考数学压轴之学霸秘笈大揭秘 学生版+教师版,文件包含专题12有关函数的计算说理类综合问题-版突破中考数学压轴之学霸秘笈大揭秘学生版doc、专题12有关函数的计算说理类综合问题-版突破中考数学压轴之学霸秘笈大揭秘教师版doc等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。