湖南省永州市宁远县2021年初中学业水平模拟考试数学试题(word版 含答案)
展开
这是一份湖南省永州市宁远县2021年初中学业水平模拟考试数学试题(word版 含答案),共10页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
宁远县2021年初中学业水平模拟考试数 学(试题卷)(时量:120分钟 满分:150分)一、选择题(每题4分,共40分.将答案填在表格内)1.在,﹣1,0,2这四个数中,属于负数的是( )A. B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是( )A.2a8 B.﹣2a8 C.2a15 D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.函数中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x<3 D.x≤35.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是( )A.10° B.20° C.30° D.40°在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A. B. C. D.7.在寻找台风中失事船只过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为( )A.米 B.米 C.米 D.米8.张老师带学校艺术团去永州参加文艺汇演,他们乘坐校车从校门口出发到永州.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在南津渡大桥附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是( )A. B. C. D.9.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是( )A.﹣110 B.110 C.﹣111 D.11110.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是( )A.4.5米 B.6米 C.7.2米 D.8米 二、填空题(每小题4分,共32分)11.分解因式:m2n﹣n= .12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 .13.若△ABC∽△DEF,且周长比为2:3,则相似比为 .14.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为 cm2.15.关于x的一元二次方程x2﹣4x+8sinα=0的两根相等,且α是锐角,则∠α= 度. 16.如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3,则下底BC的长为 .17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为 .18.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA= .三.解答题(本大题8个小题,共78分,解答题要求写出说明步骤或解答过程)19.(8分)计算:﹣|-﹣(﹣)﹣2+2sin45°﹣+ 20.(8分)先化简,再求值:(﹣)÷,其中x=tan60°+2. 21.(8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米? 22.(10分)如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73) 23.(10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值. 24.(10分)如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若⊙O的半径是3,且OF:OB=1:3,求AG的长. 25.(12分)如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论. 26.(12分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.
数学参考答案1--10 BBCDC CDBBB11. n(m+1)(m﹣1) 12. 6.75×104 13. 2:3 14. 4 30 16. 10 17. . 18. . 19.解:原式=﹣1﹣﹣4+2×﹣1+2=﹣1﹣﹣4+﹣1+2=﹣4;20.解:原式=[﹣]•=•=•=,当x=tan60°+2=+2时,原式=.解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.22.解:(1)连接EF.∵CD平行于地面,∴GD∥EF.∴.又∵AB∥EF,∴AB∥CD.而OE∥DM,则四边形OGDN是平行四边形.∴OG=DN,GD=ON.∵ON=40cm,∠EOF=90°,∠ODC=30°,∴GD=40cm,OG=GD=20cm,又EG=30cm,即,得EF=100cm.(2)延长MD交EF于点H,过点M作MP⊥EF于点P.∵四边形ONHE是平行四边形,∴NH=OE=50cm,∠MHF=∠E=60°.由于MN=60cm,∴MH=110cm.在Rt△MHP中,MP=MH•sin∠MHP,即MP=110sin60°=110×=55≈95(cm).答:躺椅的高度约为95cm. 解:(1)设原时速为xkm/h,通车后里程为ykm,则有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+m)=1600,解得:m1=20,m2=0(不合题意舍去),答:m的值为20. 24.(1)证明:连接OD. ∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90° ∴∠OCD+∠CFO=90°,∴∠ODC+∠CFO=90°,∵∠EFD=∠FDE,∠EFD=∠CDE,∴∠CDO+∠CDE=90°,∴DE为⊙O的切线;(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=EO2,∴32+x2=(x+1)2,解得:x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,∵∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴==,即=,解得:AG=6.25.(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形;(2)当AE=2EF时,FG=3EF.证明:∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE,∵AE=2EF,∴BE:DE=AE:EF=2,∴BG:AD=BE:DE=2,即BG=2AD,∵BC=AD,∴CG=AD,∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF.26.解:(1)将A(0,4)、C(5,0)代入二次函数y=x2+bx+c,得,解得.故二次函数的表达式y=x2﹣x+4;(2)如图:延长EC至E′,使E′C=EC,延长DA至D′,使D′A=DA,连接D′E′,交x轴于F点,交y轴于G点,GD=GD′EF=E′F,(DG+GF+EF+ED)最小=D′E′+DE,由E点坐标为(5,2),BC的中点;D(4,4),直角的角平分线上的点;得D′(﹣4,4),E(5,﹣2).由勾股定理,得DE==,D′E′==,(DG+GF+EF+ED)最小=D′E′+DE=+; (3)如下图:OD=.∵S△ODP的面积=12,∴点P到OD的距离==3.过点O作OF⊥OD,取OF=3,过点F作直线FG∥OD,交抛物线与点P1,P2, 在Rt△OGF中,OG===6,∴直线GF的解析式为y=x﹣6.将y=x﹣6代入y=得:x﹣6=,解得:,,将x1、x2的值代入y=x﹣6得:y1=,y2=∴点P1(,),P2(,)如下图所示:过点O作OF⊥OD,取OF=3,过点F作直线FG交抛物线与P3,P4,在Rt△PFO中,OG==6∴直线FG的解析式为y=x+6,将y=x+6代入y=得:x+6=解得:,y1=x1+6=,y2=x2+6=∴p3(,),p4(,)综上所述:点P的坐标为:(,)或(,)或(,)或(,).
相关试卷
这是一份湖南省永州市宁远县2022年初中学业水平考试模拟数学试题(三)(word版含答案),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年湖南省永州市宁远县初中学业水平考试模拟数学试题(二)(word版含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年湖南省永州市宁远县初中学业水平考试模拟数学试题(一)(word版含答案),共17页。试卷主要包含了0000014米,将0,4×10﹣5B.1,若点A等内容,欢迎下载使用。