终身会员
搜索
    上传资料 赚现金

    高考数学一轮复习 第七章 第4节直线、平面垂直的判定及性质 试卷

    立即下载
    加入资料篮
    高考数学一轮复习 第七章 第4节直线、平面垂直的判定及性质第1页
    高考数学一轮复习 第七章 第4节直线、平面垂直的判定及性质第2页
    高考数学一轮复习 第七章 第4节直线、平面垂直的判定及性质第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习 第七章 第4节直线、平面垂直的判定及性质

    展开

    这是一份高考数学一轮复习 第七章 第4节直线、平面垂直的判定及性质,共28页。试卷主要包含了直线和平面所成的角,二面角,平面与平面垂直等内容,欢迎下载使用。


     第4节 直线、平面垂直的判定及性质
    考试要求 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.

    知 识 梳 理
    1.直线与平面垂直
    (1)直线和平面垂直的定义
    如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.
    (2)判定定理与性质定理

    文字语言
    图形表示
    符号表示
    判定定理
    一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直

    ⇒l⊥α
    性质定理
    两直线垂直于同一个平面,那么这两条直线平行

    ⇒a∥b
    2.直线和平面所成的角
    (1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角.
    (2)范围:.
    3.二面角
    (1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;
    (2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
    (3)二面角的范围:[0,π].
    4.平面与平面垂直
    (1)平面与平面垂直的定义
    两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
    (2)判定定理与性质定理

    文字语言
    图形表示
    符号表示
    判定定理
    一个平面经过另一个平面的一条垂线,则这两个平面互相垂直

    ⇒α⊥β
    性质定理
    如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面

    ⇒l⊥α
    [微点提醒]
    1.两个重要结论
    (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
    (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).
    2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.
    基 础 自 测

    1.判断下列结论正误(在括号内打“√”或“×”)
    (1)直线l与平面α内的无数条直线都垂直,则l⊥α.(  )
    (2)垂直于同一个平面的两平面平行.(  )
    (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(  )
    (4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(  )
    解析 (1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.
    (2)垂直于同一个平面的两个平面平行或相交,故(2)错误.
    (3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.
    (4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.
    答案 (1)× (2)× (3)× (4)×

    2.(必修2P66练习改编)已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为(  )
    A.b⊂α B.b∥α
    C.b⊂α或b∥α D.b与α相交
    答案 C
    3.(必修2P67练习2改编)已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,有下列结论:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的是(  )
    A.①②③ B.①②④
    C.②③④ D.①②③④
    解析 如图,因为PA⊥PB,PA⊥PC,PB∩PC=P,且PB⊂平面PBC,PC⊂平面PBC,所以PA⊥平面PBC.又BC⊂平面PBC,所以PA⊥BC,同理可得PB⊥AC,PC⊥AB,故①②③正确.

    答案 A

    4.(2019·上海静安区质检)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是(  )
    A.α⊥β且m⊂α B.m⊥n且n∥β
    C.m∥n且n⊥β D.m⊥n且α∥β
    解析 由线线平行性质的传递性和线面垂直的判定定理,可知C正确.
    答案 C
    5.(2017·全国Ⅲ卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则(  )
    A.A1E⊥DC1 B.A1E⊥BD
    C.A1E⊥BC1 D.A1E⊥AC
    解析 如图,由题设知,A1B1⊥平面BCC1B1且BC1⊂平面BCC1B1,从而A1B1⊥BC1.
    又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1.

    答案 C
    6.(2018·安阳二模)已知a,b表示两条不同的直线,α,β表示两个不同的平面,下列说法错误的是(  )
    A.若a⊥α,b⊥β,α∥β,则a∥b
    B.若a⊥α,b⊥β,a⊥b,则α⊥β
    C.若a⊥α,a⊥b,α∥β,则b∥β
    D.若α∩β=a,a∥b,则b∥α或b∥β
    解析 对于A,若a⊥α,α∥β,则a⊥β,又b⊥β,故a∥b,故A正确;
    对于B,若a⊥α,a⊥b,则b⊂α或b∥α,∴存在直线m⊂α,使得m∥b,
    又b⊥β,∴m⊥β,∴α⊥β.故B正确;
    对于C,若a⊥α,a⊥b,则b⊂α或b∥α,又α∥β,所以b⊂β或b∥β,故C错误;
    对于D,若α∩β=a,a∥b,则b∥α或b∥β,故D正确.
    答案 C

    考点一 线面垂直的判定与性质
    【例1】 (2018·全国Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.

    (1)证明:PO⊥平面ABC;
    (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.
    (1)证明 因为AP=CP=AC=4,O为AC的中点,
    所以OP⊥AC,且OP=2.
    连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.
    由OP2+OB2=PB2知,OP⊥OB.
    由OP⊥OB,OP⊥AC且OB∩AC=O,知PO⊥平面ABC.
    (2)解 作CH⊥OM,垂足为H.

    又由(1)可得OP⊥CH,
    所以CH⊥平面POM.
    故CH的长为点C到平面POM的距离.
    由题设可知OC=AC=2,
    CM=BC=,∠ACB=45°.
    所以OM=,
    CH==.
    所以点C到平面POM的距离为.
    规律方法 1.证明直线和平面垂直的常用方法有:
    (1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质(α⊥β,α∩β=a,l⊥a,l⊂β⇒l⊥α).
    2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
    【训练1】 (2019·青岛调研)如图,三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.

    (1)求证:BC1⊥平面ABC;
    (2)E是棱CC1上的一点,若三棱锥E-ABC的体积为,求线段CE的长.
    (1)证明 ∵AB⊥平面BB1C1C,BC1⊂平面BB1C1C,
    ∴AB⊥BC1,
    在△CBC1中,BC=1,CC1=BB1=2,∠BCC1=60°,
    由余弦定理得BC=BC2+CC-2BC·CC1·cos∠BCC1=12+22-2×1×2cos 60°=3,∴BC1=,
    ∴BC2+BC=CC,∴BC⊥BC1,
    又AB,BC⊂平面ABC,BC∩AB=B,
    ∴BC1⊥平面ABC.
    (2)解 ∵AB⊥平面BB1C1C,
    ∴VE-ABC=VA-EBC=S△BCE·AB=S△BCE·1=,
    ∴S△BCE==CE·BC·sin∠BCE=CE·,
    ∴CE=1.
    考点二 面面垂直的判定与性质
    【例2】 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:

    (1)PA⊥底面ABCD;
    (2)BE∥平面PAD;
    (3)平面BEF⊥平面PCD.
    证明 (1)∵平面PAD⊥底面ABCD,
    且PA垂直于这两个平面的交线AD,PA⊂平面PAD,
    ∴PA⊥底面ABCD.
    (2)∵AB∥CD,CD=2AB,E为CD的中点,
    ∴AB∥DE,且AB=DE.
    ∴四边形ABED为平行四边形.
    ∴BE∥AD.
    又∵BE⊄平面PAD,AD⊂平面PAD,
    ∴BE∥平面PAD.
    (3)∵AB⊥AD,而且ABED为平行四边形.
    ∴BE⊥CD,AD⊥CD,
    由(1)知PA⊥底面ABCD,CD⊂平面ABCD,
    ∴PA⊥CD,且PA∩AD=A,PA,AD⊂平面PAD,
    ∴CD⊥平面PAD,又PD⊂平面PAD,
    ∴CD⊥PD.
    ∵E和F分别是CD和PC的中点,
    ∴PD∥EF.
    ∴CD⊥EF,又BE⊥CD且EF∩BE=E,
    ∴CD⊥平面BEF,又CD⊂平面PCD,
    ∴平面BEF⊥平面PCD.
    规律方法 1.证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定理.
    2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
    【训练2】 (2018·泸州模拟)如图,在四棱锥S-ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=AB,侧面SAD⊥底面ABCD.

    (1)求证:平面SBD⊥平面SAD;
    (2)若∠SDA=120°,且三棱锥S-BCD的体积为,求侧面 △SAB的面积.
    (1)证明 设BC=a,则CD=a,AB=2a,由题意知△BCD是等腰直角三角形,且∠BCD=90°,
    则BD=a,∠CBD=45°,
    所以∠ABD=∠ABC-∠CBD=45°,
    在△ABD中,
    AD==a,
    因为AD2+BD2=4a2=AB2,所以BD⊥AD,
    由于平面SAD⊥底面ABCD,平面SAD∩平面ABCD=AD,BD⊂平面ABCD,
    所以BD⊥平面SAD,
    又BD⊂平面SBD,所以平面SBD⊥平面SAD.
    (2)解 由(1)可知AD=SD=a,在△SAD中,∠SDA=120°,SA=2SDsin 60°=a.
    作SH⊥AD,交AD的延长线于点H,
    则SH=SDsin 60°=a,
    由(1)知BD⊥平面SAD,
    因为SH⊂平面SAD,所以BD⊥SH.
    又AD∩BD=D,所以SH⊥平面ABCD,
    所以SH为三棱锥S-BCD的高,
    所以VS-BCD=×a××a2=,
    解得a=1.

    由BD⊥平面SAD,SD⊂平面SAD,可得BD⊥SD,
    则SB===2.
    又AB=2,SA=,
    在等腰三角形SBA中,
    边SA上的高为=,
    则△SAB的面积为××=.
    考点三 平行与垂直的综合问题 多维探究
    角度1 多面体中平行与垂直关系的证明
    【例3-1】 (2018·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.

    (1)求证:PE⊥BC;
    (2)求证:平面PAB⊥平面PCD;
    (3)求证:EF∥平面PCD.
    证明 (1)因为PA=PD,E为AD的中点,
    所以PE⊥AD.
    因为底面ABCD为矩形,
    所以BC∥AD.
    所以PE⊥BC.
    (2)因为底面ABCD为矩形,
    所以AB⊥AD.
    又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
    所以AB⊥平面PAD.
    所以AB⊥PD.
    又因为PA⊥PD,且PA∩AB=A,
    所以PD⊥平面PAB.又PD⊂平面PCD,
    所以平面PAB⊥平面PCD.
    (3)如图,取PC中点G,连接FG,DG.

    因为F,G分别为PB,PC的中点,
    所以FG∥BC,FG=BC.
    因为ABCD为矩形,且E为AD的中点,
    所以DE∥BC,DE=BC.
    所以DE∥FG,DE=FG.
    所以四边形DEFG为平行四边形.
    所以EF∥DG.
    又因为EF⊄平面PCD,DG⊂平面PCD,
    所以EF∥平面PCD.
    规律方法 1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.
    2.垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.
    角度2 平行与垂直关系中的探索性问题
    【例3-2】 如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.

    (1)求三棱锥P-ABC的体积;
    (2)在线段PC上是否存在点M,使得AC⊥BM,若存在点M,求出的值;若不存在,请说明理由.
    解 (1)由题知AB=1,AC=2,∠BAC=60°,
    可得S△ABC=·AB·AC·sin 60°=,
    由PA⊥平面ABC,可知PA是三棱锥P-ABC的高.
    又PA=1,所以三棱锥P-ABC的体积V=·S△ABC·PA=.
    (2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.

    由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.
    由于BN∩MN=N,故AC⊥平面MBN.
    又BM⊂平面MBN,所以AC⊥BM.
    在Rt△BAN中,AN=AB·cos∠BAC=,
    从而NC=AC-AN=.
    由MN∥PA,得==.
    故存在满足条件的点M,且=.
    规律方法 1.求条件探索性问题的主要途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.
    2.涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.
    角度3 空间位置关系与几何体的度量计算
    【例3-3】 如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.

    (1)求异面直线AP与BC所成角的余弦值;
    (2)求证:PD⊥平面PBC;
    (3)求直线AB与平面PBC所成角的正弦值.
    (1)解 如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.

    因为AD⊥平面PDC,PD⊂平面PDC,
    所以AD⊥PD.
    在Rt△PDA中,由已知,得AP==,
    故cos∠DAP==.
    所以,异面直线AP与BC所成角的余弦值为.
    (2)证明 由(1)知AD⊥PD,
    又因为BC∥AD,所以PD⊥BC.
    又PD⊥PB,BC∩PB=B,
    所以PD⊥平面PBC.
    (3)解 过点D作DF∥AB,交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.
    因PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.
    由于AD∥BC,DF∥AB,故BF=AD=1.
    由已知,得CF=BC-BF=2.
    又AD⊥DC,故BC⊥DC.
    在Rt△DCF中,可得DF==2.
    在Rt△DPF中,可得sin∠DFP==.
    所以直线AB与平面PBC所成角的正弦值为.
    规律方法 1.本题证明的关键是垂直与平行的转化,如由AD∥BC,AD⊥PD,得PD⊥BC,进而利用线面垂直的判定定理证明PD⊥平面PBC.
    2.利用综合法求空间线线角、线面角、二面角一定注意“作角、证明、计算”是完整统一过程,缺一不可.
    (1)线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.
    (2)二面角的大小用它的平面角来度量.平面角的作法常见的有:①定义法;②垂面法.注意利用等腰、等边三角形的性质.
    【训练3】 如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.

    (1)证明:PE⊥FG.
    (2)求二面角P-AD-C的正切值.
    (3)求直线PA与直线FG所成角的余弦值.
    (1)证明 因为PD=PC且点E为CD的中点,
    所以PE⊥DC.
    又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD,
    又FG⊂平面ABCD,所以PE⊥FG.
    (2)解 由(1)知PE⊥平面ABCD,∴PE⊥AD,
    又AD⊥CD,PE∩CD=E,
    ∴AD⊥平面PDC,∴AD⊥PD,
    ∴∠PDC为二面角P-AD-C的平面角,
    在Rt△PDE中,PD=4,DE=3,
    ∴PE==,∴tan∠PDC==.
    故二面角P-AD-C的正切值为.
    (3)解 如图,连接AC,∵AF=2FB,CG=2GB,∴AC∥FG.

    ∴直线PA与FG所成角即直线PA与AC所成角∠PAC.
    在Rt△PDA中,PA2=AD2+PD2=25,∴PA=5.又PC=4.
    AC2=CD2+AD2=36+9=45,∴AC=3.
    又cos∠PAC===.
    所以直线PA与直线FG所成角的余弦值为.

    [思维升华]
    1.证明线面垂直的方法:
    (1)线面垂直的定义:a与α内任何直线都垂直⇒a⊥α;
    (2)判定定理1:⇒l⊥α;
    (3)判定定理2:a∥b,a⊥α⇒b⊥α;
    (4)面面垂直的性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β;
    2.证明面面垂直的方法
    (1)利用定义:两个平面相交,所成的二面角是直二面角;
    (2)判定定理:a⊂α,a⊥β⇒α⊥β.
    3.转化思想:三种垂直关系之间的转化

    [易错防范]
    1.证明线面垂直时,易忽视面内两条线为相交线这一条件.
    2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.
    3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.
    4.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.

    直观想象、逻辑推理——立体几何中的动态问题
    1.直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.
    2.立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等.
    3.一般是根据线、面垂直,线、面平行的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹(理科还可以利用空间向量的坐标运算求出动点的轨迹方程).
    【例1】 在正方体ABCD-A1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为,则点P的轨迹是(  )

    A.圆的一部分 B.椭圆的一部分
    C.抛物线的一部分 D.双曲线的一部分
    解析 把MN平移到平面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值是直线D1P与平面A1B1C1D1所成角,即原问题转化为:直线D1P与平面A1B1C1D1所成角为,点P在平面A1B1C1D1的投影为圆的一部分,因为点P是△A1C1D内的动点(不包括边界),所以点P的轨迹是椭圆的一部分.故选B.

    答案 B
    【例2】 (2018·石家庄一模)如图,四棱锥P-ABCD的底面是边长为2的正方形,PA⊥平面ABCD,且PA=4,M是PB上的一个动点(不与P,B重合),过点M作平面α∥平面PAD,截棱锥所得图形的面积为y,若平面α与平面PAD之间的距离为x,则函数y=f(x)的图象是(  )


    解析 过M作MN⊥AB,交AB于N,则MN⊥平面ABCD,过N作NQ∥AD,交CD于Q,过Q作QH∥PD,交PC于H,连接MH,

    则平面MNQH是所作的平面α,
    由题意得=,
    解得MN=4-2x,由=.
    即=,解得QH=(2-x),
    过H作HE⊥NQ,在Rt△HEQ中,EQ==2-x,
    ∴NE=2-(2-x)=x,∴MH=x.
    ∴y=f(x)=
    =-x2+4(0 ∴函数y=f(x)的图象如图.故选C.

    答案 C
    【例3】 如图,在棱长为2的正四面体A-BCD中,E、F分别为直线AB、CD上的动点,且|EF|=.若记EF中点P的轨迹为L,则|L|等于________(注:|L|表示L的测度,在本题,L为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积).

    解析 如图,当E为AB中点时,F分别在C,D处,满足|EF|=,此时EF的中点P在EC,ED的中点P1,P2的位置上;

    当F为CD中点时,E分别在A,B处,满足|EF|=,此时EF的中点P在BF,AF的中点P3,P4的位置上,
    连接P1P2,P3P4相交于点O,则四点P1,P2,P3,P4共圆,圆心为O,圆的半径为,则EF中点P的轨迹L为以O为圆心,以为半径的圆,
    其测度|L|=2π×=π.
    答案 π
    【例4】 已知ABCD⊥平面ADEF,AB⊥AD,CD⊥AD,且AB=1,AD=CD=2,ADEF是正方形,在正方形ADEF内部有一点M,满足MB,MC与平面ADEF所成的角相等,则点M的轨迹长度为(  )
    A. B. C.π D.π
    解析 根据题意,以D为原点,分别以DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系D-xyz,如图1所示,则B(2,1,0),C(0,2,0),设M(x,0,z),易知直线MB,MC与平面ADEF所成的角分别为∠AMB,∠DMC,均为锐角,且∠AMB=∠DMC,所以sin ∠AMB=sin ∠DMC⇒=,即2MB=MC,因此2=,整理得+z2=,由此可得,点M在正方形ADEF内的轨迹是以点O为圆心,半径为的圆弧M1M2,如图2所示,易知圆心角∠M1OM2=,所以lM1M2=×=π,故选C.

    答案 C

    基础巩固题组
    (建议用时:40分钟)
    一、选择题
    1.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )
    A.m∥l B.m∥n C.n⊥l D.m⊥n
    解析 因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.
    答案 C
    2.已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是(  )
    A.若m⊂α,则m⊥β
    B.若m⊂α,n⊂β,则m⊥n
    C.若m⊄α,m⊥β,则m∥α
    D.若α∩β=m,n⊥m,则n⊥α
    解析 对于A:若m⊂α,则m与平面β可能平行或相交,所以A错误;
    对于B:若m⊂α,n⊂β,则m与n可能平行、相交或异面,所以B错误;
    对于C:若m⊄α,m⊥β,则m∥α,C正确;
    对于D:α∩β=m,n⊥m,则n不一定与平面α垂直,所以D错误.
    答案 C
    3.(2019·泉州模拟)在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是(  )

    解析 如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知E,F,G,M,N,Q六个点共面,直线BD1与平面EFMNQG垂直,并且选项A、B、C中的平面与这个平面重合,不满足题意,只有选项D中的直线BD1与平面EFG不垂直,满足题意,故选D.

    答案 D
    4.(2019·济南一模)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是(  )
    A.若α⊥β,m∥α,n∥β,则m⊥n
    B.若m⊥α,m∥n,n∥β,则α⊥β
    C.若m⊥n,m⊂α,n⊂β,则α⊥β
    D.若α∥β,m⊂α,n⊂β,则m∥n
    解析 若α⊥β,m∥α,n∥β,则m与n相交、平行或异面,故A错误;
    ∵m⊥α,m∥n,∴n⊥α,
    又∵n∥β,∴α⊥β,故B正确;
    若m⊥n,m⊂α,n⊂β,则α与β的位置关系不确定,故C错误;
    若α∥β,m⊂α,n⊂β,则m∥n或m,n异面,
    故D错误.
    答案 B
    5.(2018·赣州模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,且BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H在(  )

    A.直线AC上 B.直线AB上
    C.直线BC上 D.△ABC内部
    解析 连接AC1,如图.

    ∵∠BAC=90°,∴AC⊥AB,
    ∵BC1⊥AC,BC1∩AB=B,
    ∴AC⊥平面ABC1.
    又AC在平面ABC内,∴根据面面垂直的判定定理,知平面ABC⊥平面ABC1,
    则根据面面垂直的性质定理知,在平面ABC1内一点C1向平面ABC作垂线,垂足必落在交线AB上.故选B.
    答案 B
    二、填空题
    6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有____________;与AP垂直的直线有____________.

    解析 因为PC⊥平面ABC,所以PC垂直于直线AB,BC,AC.因为AB⊥AC,AB⊥PC,AC∩PC=C,所以AB⊥平面PAC,又因为AP⊂平面PAC,所以AB⊥AP,与AP垂直的直线是AB.
    答案 AB,BC,AC AB
    7.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为是正确的条件即可).

    解析 连接AC,BD,则AC⊥BD,因为PA⊥底面ABCD,所以PA⊥BD.又PA∩AC=A,所以BD⊥平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.

    答案 DM⊥PC(或BM⊥PC)
    8.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为________.

    解析 连接A1C1,则∠AC1A1为AC1与平面A1B1C1D1所成的角.
    因为AB=BC=2,所以A1C1=AC=2,
    又AA1=1,所以AC1=3,
    所以sin∠AC1A1==.
    答案 
    三、解答题
    9. (2019·石家庄摸底)如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.

    (1)求证:BF∥平面ADP;
    (2)已知O是BD的中点,求证:BD⊥平面AOF.
    证明  (1)如图,取PD的中点为G,连接FG,AG.

    ∵F是CE的中点,∴FG是梯形CDPE的中位线,
    ∵CD=3PE,
    ∴FG=2PE,FG∥CD.
    ∵CD∥AB,AB=2PE,
    ∴AB∥FG,AB=FG,即四边形ABFG是平行四边形,
    ∴BF∥AG,又BF⊄平面ADP,AG⊂平面ADP,
    ∴BF∥平面ADP.
    (2)延长AO交CD于M,连接BM,FM.
    ∵BA⊥AD,CD⊥DA,AB=AD,O为BD的中点,
    ∴四边形ABMD是正方形,则BD⊥AM,MD=2PE,
    ∴FM∥PD.
    ∵PD⊥平面ABCD,∴FM⊥平面ABCD,∴FM⊥BD,
    ∵AM∩FM=M,∴BD⊥平面AMF,
    ∴BD⊥平面AOF.
    10.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

    (1)求证:DC⊥平面PAC;
    (2)求证:平面PAB⊥平面PAC;
    (3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.
    (1)证明 因为PC⊥平面ABCD,DC⊂平面ABCD,

    所以PC⊥DC.
    又因为AC⊥DC,且PC∩AC=C,所以DC⊥平面PAC.
    (2)证明 因为AB∥CD,DC⊥AC,所以AB⊥AC.
    因为PC⊥平面ABCD,AB⊂平面ABCD,
    所以PC⊥AB.
    又因为PC∩AC=C,所以AB⊥平面PAC.
    又AB⊂平面PAB,所以平面PAB⊥平面PAC.
    (3)解 棱PB上存在点F,使得PA∥平面CEF.
    理由如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,
    所以PA∥平面CEF.
    能力提升题组
    (建议用时:20分钟)
    11.(2019·唐山一模)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有(  )

    A.AG⊥平面EFH B.AH⊥平面EFH
    C.HF⊥平面AEF D.HG⊥平面AEF
    解析 根据折叠前、后AH⊥HE,AH⊥HF不变,又HE∩HF=H,∴AH⊥平面EFH,B正确.
    ∵过A只有一条直线与平面EFH垂直,∴A不正确.
    ∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确.
    由条件证不出HG⊥平面AEF,∴D不正确.
    答案 B
    12.如图,在矩形ABCD中,AB=,BC=1,将△ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1ABC的四个面中,有n对平面相互垂直,则n等于(  )

    A.2 B.3 C.4 D.5
    解析 设D1在平面ABC上的射影为E,连接D1E,则D1E⊥平面ABC.

    ∵D1E⊂平面ABD1,
    ∴平面ABD1⊥平面ABC.
    ∵D1E⊥平面ABC,BC⊂平面ABC,∴D1E⊥BC,
    又AB⊥BC,D1E∩AB=E,∴BC⊥平面ABD1.
    又BC⊂平面BCD1,∴平面BCD1⊥平面ABD1.
    ∵BC⊥平面ABD1,AD1⊂平面ABD1,
    ∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,
    ∴AD1⊥平面BCD1,
    又AD1⊂平面ACD1,∴平面ACD1⊥平面BCD1.
    ∴共有3对平面相互垂直.故选B.
    答案 B
    13.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为________.

    解析 设B1F=x,
    因为AB1⊥平面C1DF,DF⊂平面C1DF,
    所以AB1⊥DF,
    由已知可得A1B1=,
    设Rt△AA1B1斜边AB1上的高为h,则DE=h.
    又×2×=×h,
    所以h=,DE=.
    在Rt△DB1E中,B1E==.
    由面积相等得××=×x,
    得x=.
    答案 
    14.如图①,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图②所示的几何体.

    (1)求证:AB⊥平面ADC;
    (2)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为,求点B到平面ADE的距离.
    (1)证明 因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BD⊥DC,DC⊂平面BCD,
    所以DC⊥平面ABD.
    因为AB⊂平面ABD,所以DC⊥AB,
    又因为AD⊥AB,且DC∩AD=D,
    所以AB⊥平面ADC.
    (2)解 由(1)知DC⊥平面ABD,所以AC在平面ABD内的正投影为AD,即∠DAC为AC与其在平面ABD内的正投影所成角.
    依题意得tan∠DAC==,
    因为AD=1,所以CD=,
    设AB=x(x>0),则BD=,
    因为△ABD∽△DCB,所以=,即=,
    解得x=,故AB=,BD=,BC=3.
    由于AB⊥平面ADC,AC⊂平面ADC,
    所以AB⊥AC,又E为BC的中点,
    所以由平面几何知识得AE==,
    因为BD⊥DC,E为BC的中点,
    所以DE==,
    所以S△ADE=×1×=.
    因为DC⊥平面ABD,
    所以VA-BCD=VC-ABD=CD·S△ABD=.
    设点B到平面ADE的距离为d.
    则由d·S△ADE=VB-ADE=VA-BDE=VA-BCD=,得d=,即点B到平面ADE的距离为.
    新高考创新预测
    15.(多选题)在三棱锥P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点,则下列说法正确的是(  )

    A.当AE⊥PB时,△AEF一定为直角三角形
    B.当AF⊥PC时,△AEF一定为直角三角形
    C.当EF∥平面ABC时,△AEF一定为直角三角形
    D.当PC⊥平面AEF时,△AEF一定为直角三角形
    解析 因为AP⊥平面ABC,BC⊂平面ABC,所以AP⊥BC,又AB⊥BC,且PA和AB是平面PAB内两条相交直线,则BC⊥平面PAB,又AE⊂平面PAB,所以BC⊥AE,又PB∩BC=B,当AE⊥PB时,AE⊥平面PBC,又EF⊂平面PBC,则AE⊥EF,△AEF一定是直角三角形,A正确;当EF∥平面ABC时,EF在平面PBC内,平面PBC与平面ABC相交于BC,则EF∥BC,则EF⊥AE,△AEF一定是直角三角形,C正确;当PC⊥平面AEF时,又AE⊂平面AEF,AE⊥PC,又AE⊥BC,PC∩BC=C,则AE⊥平面PBC,又EF⊂平面PBC,所以AE⊥EF,△AEF一定是直角三角形,D正确;B中结论无法证明.
    答案 ACD

    相关试卷

    高考数学一轮复习 专题8.5 直线、平面垂直的判定及性质(练):

    这是一份高考数学一轮复习 专题8.5 直线、平面垂直的判定及性质(练),文件包含专题85直线平面垂直的判定及性质练教师版docx、专题85直线平面垂直的判定及性质练学生版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    高考数学一轮复习 专题8.5 直线、平面垂直的判定及性质(讲):

    这是一份高考数学一轮复习 专题8.5 直线、平面垂直的判定及性质(讲),文件包含专题85直线平面垂直的判定及性质讲教师版docx、专题85直线平面垂直的判定及性质讲学生版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。

    高中数学高考第4讲 直线、平面垂直的判定与性质:

    这是一份高中数学高考第4讲 直线、平面垂直的判定与性质,共19页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map