年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学八年级下17.2 第1课时 勾股定理的逆定理 教案

    立即下载
    加入资料篮
    人教版数学八年级下17.2 第1课时 勾股定理的逆定理 教案第1页
    还剩1页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册第十七章 勾股定理17.2 勾股定理的逆定理第1课时教案

    展开

    这是一份人教版八年级下册第十七章 勾股定理17.2 勾股定理的逆定理第1课时教案,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
    172 勾股定理的逆定理1课时 勾股定理的逆定理
    1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题(难点)3理解原命题、逆命题、逆定理的概念及关系.(重点)                   一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状 如图,正方形网格中的ABC,若小方格边长为1,则ABC的形状为(  )A.直角三角形 B.锐角三角形C.钝角三角形 D.以上答案都不对解析:正方形小方格边长为1BC5AC3AB.ABC中,BC2AC2501868AB268BC2AC2AB2∴△ABC是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系 如图,已知在正方形ABCD中,AEEBAFAD.求证:CEEF.解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF.设正方形的边长为4四边形ABCD为正方形,ABBCCDDA4.EAB中点,AFADAEBE2AF1DF3.由勾股定理得EF212225EC2224220FC2423225.EF2EC2FC2∴△CFE是直角三角形,且FEC90°,即EFCE.方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数 判断下列几组数中,一定是勾股数的是(  )A1    B81517C71415  D.1解析:选项A不是,因为不是正整数;选项B是,因为8215217281517是正整数;选项C不是,因为72142152;选项D不是,因为不是正整数.故选B.方法总结:勾股数必须满足:三个数必须是正整数,例如:2.566.5满足a2b2c2,但是它们不是正整数,所以它们不是勾股数;一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题 如图,在四边形ABCD中,B90°AB8BC6CD24AD26,求四边形ABCD的面积.解析:连接AC,根据已知条件可求出AC,再运用勾股定理可证ACD为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD的面积.解:连接AC.∵∠B90°∴△ABC为直角三角形,AC2AB2BC28262102AC10.ACD中,AC2CD2100576676AD2262676AC2CD2AD2∴△ACD为直角三角形,且ACD90°.S四边形ABCDSABCSACD×6×8×10×24144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理 写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补; (2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长abc满足a2b2c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.  

    相关教案

    初中数学人教版八年级下册17.2 勾股定理的逆定理第1课时教案及反思:

    这是一份初中数学人教版八年级下册17.2 勾股定理的逆定理第1课时教案及反思,共5页。教案主要包含了自主学习,交流展示,合作探究,达标测试等内容,欢迎下载使用。

    人教版17.2 勾股定理的逆定理第2课时教案设计:

    这是一份人教版17.2 勾股定理的逆定理第2课时教案设计,共5页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    人教版八年级下册第十七章 勾股定理17.2 勾股定理的逆定理第1课时教学设计及反思:

    这是一份人教版八年级下册第十七章 勾股定理17.2 勾股定理的逆定理第1课时教学设计及反思,共8页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map