![高三数学一轮复习: 第2章 第12节 导数与函数的极值、最值第1页](http://m.enxinlong.com/img-preview/3/3/6016063/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高三数学一轮复习: 第2章 第12节 导数与函数的极值、最值第2页](http://m.enxinlong.com/img-preview/3/3/6016063/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高三数学一轮复习: 第2章 第12节 导数与函数的极值、最值第3页](http://m.enxinlong.com/img-preview/3/3/6016063/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高三数学一轮复习: 第2章 第12节 导数与函数的极值、最值
展开
这是一份高三数学一轮复习: 第2章 第12节 导数与函数的极值、最值,共8页。
1.函数的极值与导数的关系
(1)函数的极小值与极小值点
若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.
(2)函数的极大值与极大值点
若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.
2.函数的最值与导数的关系
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在[a,b]上的最大(小)值的步骤
①求函数y=f(x)在(a,b)内的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)函数的极大值一定比极小值大.( )
(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )
(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )
(4)若实际问题中函数定义域是开区间,则不存在最优解.( )
[答案] (1)× (2)× (3)√ (4)×
2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图2121所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
图2121
A.1 B.2
C.3 D.4
A [导函数f′(x)的图象与x轴的交点中,左侧图象在x轴下方,右侧图象在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]
3.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-eq \f(1,3)x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )
A.13万件 B.11万件
C.9万件 D.7万件
C [y′=-x2+81,令y′=0得x=9或x=-9(舍去).
当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0,
则当x=9时,y有最大值.
即使该生产厂家获取最大年利润的年产量为9万件.]
4.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=( )
A.-4 B.-2
C.4 D.2
D [由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x2时,f′(x)>0;当-2
相关试卷
这是一份高考数学一轮复习检测:第2章第3节 导数与函数的极值、最值 含解析,共11页。试卷主要包含了设函数f=ax2+bx+c等内容,欢迎下载使用。
这是一份新高考数学一轮复习讲义 第3章 §3.3 导数与函数的极值、最值,共18页。试卷主要包含了揣摩例题,精练习题,加强审题的规范性,重视错题等内容,欢迎下载使用。
这是一份高中数学高考第3讲 导数与函数的极值、最值,共19页。试卷主要包含了函数的极值与导数,函数的最值,设函数f=x2+1-ln x.等内容,欢迎下载使用。