2021年人教版七年级下册数学期末综合复习训练题(2)(含答案)
展开
这是一份2021年人教版七年级下册数学期末综合复习训练题(2)(含答案),共15页。试卷主要包含了已知数据,已知等内容,欢迎下载使用。
1.为了解某中学八年级600名学生的身高情况,抽查了其中100名学生的身高进行统计分析.下面叙述正确的是( )
A.以上调查属于全面调查
B.每名学生是总体的一个个体
C.100名学生的身高是总体的一个样本
D.600名学生是总体
2.下列图形中,由∠1=∠2能得到AB∥CD的是( )
A.B.
C.D.
3.已知a,b分别是6﹣的整数部分和小数部分,那么2a﹣b的值是( )
A.3﹣B.4﹣C.D.2
4.若方程组的解满足x+y=2021,则k等于( )
A.2019B.2020C.2021D.2022
5.定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是( )
A.[x]=x(x为整数)B.0≤x﹣[x]<1
C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)
6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )
A.(11,3)B.(3,11)C.(11,9)D.(9,11)
二.填空题
7.已知数据:,,π,,0,其中无理数出现的频率为 .
8.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是 .
9.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为 .
10.已知:(x2+y2+1)2﹣4=0,则x2+y2= .
11.已知实数x、y满足2x﹣3y=4,且x>﹣1,y≤2,设k=x﹣y,则k的取值范围是 .
12.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为 .
三.解答题
13.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.
14.计算下列各题:
(1) (2)|7﹣|﹣||﹣
15.解方程:
(1). (2).
16.某校组织全校学生进行“创文明城市知识竞赛”,成绩记为A、B、C、D、E共5个等级,为了解本次竞赛的成绩(等级)情况,现从中随机抽取部分学生的成绩(等级),统计整理并制作了如下的统计图,请根据统计图回答下列问题:
(1)这次抽样调查的样本容量为 ,扇形统计图中C级所占圆心角为 °.
(2)补全条形统计图.
(3)如果该校共有2000名学生,测试成绩(等级)为A、B级的定为优秀,请估计该校达到优秀的学生有多少名.
17.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.
(1)求a,b,c的值;
(2)求3a﹣b+c的平方根.
18.在平面直角坐标系中,点A(1,2a+3)在第一象限.
(1)若点A到x轴的距离与到y轴的距离相等,求a的值;
(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.
19.已知关于x的不等式>x﹣1.
(1)当m=1时,求该不等式的解集;
(2)m取何值时,该不等式有解,并求出解集.
20.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
21.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.
(1)求点B的坐标;
(2)求△ABC的面积;
(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.
22.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.
参考答案
一.选择题
1.解:A、以上调查属于抽样调查,故A不符合题意;
B、每名学生的身高情况是总体的一个个体,故B不符合题意;
C、100名学生的身高是总体的一个样本,故C符合题意;
D、600名学生的身高情况是总体,故D不符合题意;
故选:C.
2.解:如图所示:
∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
故选:B.
3.解:3<<4,
﹣4<﹣3,
6﹣4,
a=2,
b=6﹣﹣2=4﹣,
2a﹣b=2×2﹣(4﹣)=,
故选:C.
4.解:.
①×2﹣②×3得:
﹣25y=﹣5k.
∴y=k.
将y=k代入①得:
x=﹣1.
∴.
将代入x+y=2021中得:
.
∴k=2022.
故选:D.
5.解:A、∵[x]为不超过x的最大整数,
∴当x是整数时,[x]=x,成立;
B、∵[x]为不超过x的最大整数,
∴0≤x﹣[x]<1,成立;
C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,
∵﹣9>﹣10,
∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],
∴[x+y]≤[x]+[y]不成立,
D、[n+x]=n+[x](n为整数),成立;
故选:C.
6.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.
故选:A.
二.填空题
7.解:在数据,,π,,0这五个数据中,无理数有2个,
∴无理数出现的频率为,
故答案为:.
8.解:若方程组是关于x,y的二元一次方程组,
则c+3=0,a﹣2=1,b+3=1,
解得c=﹣3,a=3,b=﹣2.
所以代数式a+b+c的值是﹣2.
或c+3=0,a﹣2=0,b+3=1,
解得c=﹣3,a=2,b=﹣2.
所以代数式a+b+c的值是﹣3.
综上所述,代数式a+b+c的值是﹣2或﹣3.
故答案为:﹣2或﹣3.
9.解:∵BE平分∠ABC,DE平分∠ADC,
∴∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,
∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,
∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,
∴∠BAD+∠BCD=2∠E,
∵∠BAD=70°,∠BCD=40°,
∴∠E=(∠BAD+∠BCD)=(70°+40°)=55°.
故答案为:55°.
10.解:∵(x2+y2+1)2﹣4=0,
∴(x2+y2+1)2=4,
∵x2+y2+1>0,
∴x2+y2+1=2,
∴x2+y2=1.
故答案为:1.
11.解:∵2x﹣3y=4,
∴y=(2x﹣4),
∵y≤2,
∴(2x﹣4)≤2,解得x≤5,
又∵x>﹣1,
∴﹣1<x≤5,
∵k=x﹣(2x﹣4)=x+,
当x=﹣1时,k=×(﹣1)+=1;
当x=5时,k=×5+=3,
∴1<k≤3.
故答案为:1<k≤3.
12.解:设M(x,y),由“实际距离”的定义可知:
点M只能在ECFG区域内,
﹣1<x<5,﹣5<y<1,
又∵M到A,B,C距离相等,
∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①
∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②
要将|x﹣3|与|y+3|中绝对值去掉,
需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,
将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,
由图可知M只能在矩形AENK中,
故x<3,y>﹣3,
则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,
解得,x=1,y=﹣2,则M(1,﹣2)
故答案为:(1,﹣2).
三.解答题
13.证明:∵∠ABC+∠ECB=180°,
∴AB∥DE,
∴∠ABC=∠BCD,
∵∠P=∠Q,
∴PB∥CQ,
∴∠PBC=∠BCQ,
∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,
∴∠1=∠2.
14.解:(1)原式=1﹣3﹣+0.5+=﹣1;
(2)原式=7﹣﹣π+﹣7=﹣π.
15.解:(1),
②﹣①×3得:2x=3,
解得:x=,
把x=代入①得:3+y=2,
解得:y=﹣1,
所以原方程组的解为:;
(2)整理,得
②﹣①得:3y=﹣6,
解得:y=﹣2,
把y=﹣2代入②得:4x﹣3×(﹣2)=7,
解得:x=,
所以原方程的解为:.
16.解:(1)10÷20%=50(人),360°×=36°,
故答案为:50,36;
(2)50﹣10﹣5﹣8﹣6=21(人),补全条形统计图如图所示:
(3)2000×=1240(人),
答:该校达到优秀的学生有1240人.
17.解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,
∴5a+2=27,3a+b﹣1=16,
∴a=5,b=2,
∵c是的整数部分,
∴c=3.
(2)将a=5,b=2,c=3代入得:3a﹣b+c=16,
∴3a﹣b+c的平方根是±4.
18.解:(1)∵点A到x轴的距离与到y轴的距离相等,
∴2a+3=1,
解得a=﹣1;
(2)∵点A到x轴的距离小于到y轴的距离,点A在第一象限,
∴2a+3<1且2a+3>0,
解得a<﹣1且a>﹣,
∴﹣<a<﹣1.
19.解:(1)当m=1时,不等式为>﹣1,
去分母得:2﹣x>x﹣2,
解得:x<2;
(2)不等式去分母得:2m﹣mx>x﹣2,
移项合并得:(m+1)x<2(m+1),
当m≠﹣1时,不等式有解,
当m>﹣1时,不等式解集为x<2;
当m<﹣1时,不等式的解集为x>2.
20.解:(1)设每名熟练工每月可以安装x辆电动汽车,新工人每月分别安装y辆电动汽车,
根据题意得,
解之得.
答:每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;
(2)设调熟练工m人,
由题意得,12(4m+2n)=240,
整理得,n=10﹣2m,
∵0<n<10,
∴当m=1,2,3,4时,n=8,6,4,2,
即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.
21.解:(1)点B在点A的右边时,﹣1+3=2,
点B在点A的左边时,﹣1﹣3=﹣4,
所以,B的坐标为(2,0)或(﹣4,0);
(2)△ABC的面积=×3×4=6;
(3)设点P到x轴的距离为h,
则×3h=10,
解得h=,
点P在y轴正半轴时,P(0,),
点P在y轴负半轴时,P(0,﹣),
综上所述,点P的坐标为(0,)或(0,﹣).
22.解:(1)如图1,过G作GH∥AB,
∵AB∥CD,
∴GH∥AB∥CD,
∴∠AMG=∠HGM,∠CNG=∠HGN,
∵MG⊥NG,
∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;
(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,
∵GK∥AB,AB∥CD,
∴GK∥CD,
∴∠KGN=∠GND=α,
∵GK∥AB,∠BMG=30°,
∴∠MGK=∠BMG=30°,
∵MG平分∠BMP,ND平分∠GNP,
∴∠GMP=∠BMG=30°,
∴∠BMP=60°,
∵PQ∥AB,
∴∠MPQ=∠BMP=60°,
∵ND平分∠GNP,
∴∠DNP=∠GND=α,
∵AB∥CD,
∴PQ∥CD,
∴∠QPN=∠DNP=α,
∴∠MGN=30°+α,∠MPN=60°﹣α,
∴∠MGN+∠MPN=30°+α+60°﹣α=90°;
(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,
∵AB,FG交于M,MF平分∠AME,
∴∠FME=∠FMA=∠BMG=x,
∴∠AME=2x,
∵GK∥AB,
∴∠MGK=∠BMG=x,
∵ET∥AB,
∴∠TEM=∠EMA=2x,
∵CD∥AB∥KG,
∴GK∥CD,
∴∠KGN=∠GND=y,
∴∠MGN=x+y,
∵∠CND=180°,NE平分∠CNG,
∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,
∵ET∥AB∥CD,
∴ET∥CD,
∴∠TEN=∠CNE=90°﹣y,
∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,
∵2∠MEN+∠G=105°,
∴2(90°﹣y﹣2x)+x+y=105°,
∴x=25°,
∴∠AME=2x=50°.
相关试卷
这是一份人教版七年级数学下册期末阶段综合复习训练题,共11页。试卷主要包含了选择题,计算题,解答题等内容,欢迎下载使用。
这是一份2022—2023学年人教版数学七年级下册期末压轴题训练,共41页。试卷主要包含了问题情境,如图1,,的平分线交于点G,,猜想说理等内容,欢迎下载使用。
这是一份2021-2022学年人教版九年级数学上册期末综合复习训练题(含答案),共14页。