2021年宁夏吴忠市中考数学模拟试卷
展开2021年宁夏吴忠市中考数学模拟试卷
一、选择题(每小题3分,共24分)
1.(3分)2020年6月23日,中国第55颗比斗导航卫星成功发射,顺利完成全球组网其中支特北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( )
A.2.2×108 B.2.2×10﹣8 C.0.22×10﹣7 D.22×108
2.(3分)下列运算正确的是( )
A.3a+2a=5a2 B.﹣8a2÷4a=2a
C.(﹣2a2)3=﹣8a6 D.4a3•3a2=12a6
3.(3分)某校足球队有16名队员,队员的年龄情况统计如下:
年龄/岁
13
14
15
16
人数
3
5
6
2
则这16名队员年龄的中位数和众数分别是( )
A.14,15 B.15,15 C.14.5,14 D.14.5,15
4.(3分)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为( )
A. B. C. D.
5.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.实数根的个数与实数b的取值有关
6.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为( )
A.2 B.3 C.4 D.6
7.(3分)如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于( )
A.25° B.30° C.50° D.60°
8.(3分)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是( )
A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2
B.3a+c=0
C.方程ax2+bx+c=﹣2有两个不相等的实数根
D.当x≥0时,y随x的增大而减小
二、填空题(每小题3分,共24分)
9.(3分)计算:|1﹣|+20= .
10.(3分)因式分解:ab2﹣2ab+a= .
11.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为 .
12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k= .
13.(3分)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为 .
14.(3分)一个几何体的三视图如图所示,则该几何体的表面积为 .
15.(3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于 .
16.(3分)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多 个小正方形.
三、解答题(每小题6分,共36分)
17.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)画出△ABC关于原点O的中心对称图形△A1B1C1;
(2)将么ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2.
18.(6分)解不等式组:
19.(6分)解分式方程:﹣=1.
20.(6分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.
(1)求每本甲种词典和每本乙种词典的价格分别为多少元?
(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
21.(6分)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.
求证:CE=DF.
22.(6分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次调查所得数据的众数是 部,中位数是 部;
(2)扇形统计图中“4部”所在扇形的圆心角为 度;
(3)请将条形统计图补充完整;
(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.
四、解答题(23、24题每题8分,25、26题每题10分,共36分)
23.(8分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.
(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB.
24.(8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.
(1)求y1,y2对应的函数表达式;
(2)求△AOB的面积;
(3)直接写出当x<0时,不等式ax+b>的解集.
25.(10分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地
车型
A地(元/辆)
B地(元/辆)
大货车
900
1000
小货车
500
700
现安排上述装好物资的20辆货车中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求y与x的函数解析式,并直接写出x的取值范围;
(3)若运往A地的物资不少于140吨,求总运费y的最小值.
26.(10分)如图1,在等腰直角三角形ADC中,∠ADC=90°.AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为a(0°<a<90°).如图2,在旋转过程中.
(1)判断△AGD与△CED是否全等,并说明理由;
(2)当CE=CD时,AG与EF交于点H,求GH的长.
2021年宁夏吴忠市中考数学模拟试卷
参考答案与试题解析
一、选择题(每小题3分,共24分)
1.(3分)2020年6月23日,中国第55颗比斗导航卫星成功发射,顺利完成全球组网其中支特北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( )
A.2.2×108 B.2.2×10﹣8 C.0.22×10﹣7 D.22×108
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【解答】解:0.000000022=2.2×10﹣8,
故选:B.
2.(3分)下列运算正确的是( )
A.3a+2a=5a2 B.﹣8a2÷4a=2a
C.(﹣2a2)3=﹣8a6 D.4a3•3a2=12a6
【分析】直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.
【解答】解:A、3a+2a=5a,故此选项错误;
B、﹣8a2÷4a=﹣2a,故此选项错误;
C、(﹣2a2)3=﹣8a6,正确;
D、4a3•3a2=12a5,故此选项错误;
故选:C.
3.(3分)某校足球队有16名队员,队员的年龄情况统计如下:
年龄/岁
13
14
15
16
人数
3
5
6
2
则这16名队员年龄的中位数和众数分别是( )
A.14,15 B.15,15 C.14.5,14 D.14.5,15
【分析】根据中位数、众数的定义分别进行解答,即可得出答案.
【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;
15出现了6次,出现的次数最多,则众数是15;
故选:D.
4.(3分)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为( )
A. B. C. D.
【分析】用列表法表示所有可能出现的结果,从中找出两次和为5的结果数,进而求出相应的概率.
【解答】解:用列表法表示所有可能出现的结果情况如下:
共有12种可能出现的结果,其中“和为5”的有4种,
∴P(和为5)==.
故选:C.
5.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.实数根的个数与实数b的取值有关
【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.
【解答】解:∵△=b2﹣4×(﹣1)=b2+4>0,
∴方程有两个不相等的实数根.
故选:A.
6.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为( )
A.2 B.3 C.4 D.6
【分析】根据线段垂直平分线的性质即可得到结论.
【解答】解:由作图知,MN是线段BC的垂直平分线,
∴BD=CD,
∵AC=6,AD=2,
∴BD=CD=4,
故选:C.
7.(3分)如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于( )
A.25° B.30° C.50° D.60°
【分析】由折叠的性质可得出∠ACB′的度数,由矩形的性质可得出AD∥BC,再利用“两直线平行,内错角相等”可求出∠2的度数.
【解答】解:由折叠的性质可知:∠ACB′=∠1=25°.
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠2=∠1+∠ACB′=25°+25°=50°.
故选:C.
8.(3分)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是( )
A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2
B.3a+c=0
C.方程ax2+bx+c=﹣2有两个不相等的实数根
D.当x≥0时,y随x的增大而减小
【分析】根据二次函数的图象和性质分别对各个选项进行判断即可.
【解答】解:∵抛物线的对称轴为直线x=1,a<0,
∴点(﹣1,0)关于直线x=1的对称点为(3,0),
则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,
∵当x>1时,函数y随x增大而减小,
故A选项不符合题意;
把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c=0②,
①×3+②得:12a+4c=0,
∴3a+c=0,
故B选项不符合题意;
当y=﹣2时,y=ax2+bx+c=﹣2,
由图象得:纵坐标为﹣2的点有2个,
∴方程ax2+bx+c=﹣2有两个不相等的实数根,
故C选项不符合题意;
∵二次函数图象的对称轴为x=1,a<0,
∴当x≤1时,y随x的增大而增大;
当x≥1时,y随x的增大而减小;
故D选项符合题意;
故选:D.
二、填空题(每小题3分,共24分)
9.(3分)计算:|1﹣|+20= .
【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值.
【解答】解:原式=﹣1+1
=.
故答案为:.
10.(3分)因式分解:ab2﹣2ab+a= a(b﹣1)2 .
【分析】原式提取a,再运用完全平方公式分解即可.
【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;
故答案为:a(b﹣1)2.
11.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为 .
【分析】使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.
【解答】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c的开口向上的有3种结果,
∴使抛物线y=ax2+bx+c的开口向上的概率为,
故答案为:.
12.(3分)如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k= ﹣12 .
【分析】根据反比例函数比例系数的几何意义即可解决问题.
【解答】解:∵AB⊥OB,
∴S△AOB==6,
∴k=±12,
∵反比例函数的图象在第二象限,
∴k<0,
∴k=﹣12,
故答案为﹣12.
13.(3分)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为 19 .
【分析】由线段的垂直平分线的性质可得AC=2AE,AD=DC,从而可得答案.
【解答】解:∵DE是AC的垂直平分线,AE=3,
∴AC=2AE=6,AD=DC,
∵AB+BD+AD=13,
∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.
故答案为:19.
14.(3分)一个几何体的三视图如图所示,则该几何体的表面积为 3π+4 .
【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.
【解答】解:观察该几何体的三视图发现其为半个圆柱,
半圆柱的直径为2,高为2,
故其表面积为:π×12+(π+2)×2=3π+4,
故答案为:3π+4.
15.(3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于 π .
【分析】由AB、BC、AC长可推导出△ACB为等腰直角三角形,连接OC,得出∠BOC=90°,计算出OB的长就能利用弧长公式求出的长了.
【解答】解:∵每个小方格都是边长为1的正方形,
∴AB=2,AC=,BC=,
∴AC2+BC2=AB2,
∴△ACB为等腰直角三角形,
∴∠A=∠B=45°,
∴连接OC,则∠COB=90°,
∵OB=,
∴的长为:=π,
故答案为:π.
16.(3分)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多 2n+3 个小正方形.
【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.
【解答】解:∵第1个正方形需要4个小正方形,4=22,
第2个正方形需要9个小正方形,9=32,
第3个正方形需要16个小正方形,16=42,
…,
∴第n+1个正方形有(n+1+1)2个小正方形,
第n个正方形有(n+1)2个小正方形,
故拼成的第n+1个正方形比第n个正方形多(n+2)2﹣(n+1)2=(2n+3)个小正方形.
故答案为:2n+3.
三、解答题(每小题6分,共36分)
17.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)画出△ABC关于原点O的中心对称图形△A1B1C1;
(2)将么ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2.
【分析】(1)利用中心对称的性质,分别作出A,B,C的对应点A1,B1,C1即可.
(2)利用旋转变换的性质,分别作出A,B,C的对应点A2,B2,C2即可.
【解答】解:(1)如图,△A1B1C1即为所求作.
(2)如图,△A2B2C2即为所求作.
18.(6分)解不等式组:
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:解不等式5x﹣3>2x,得:x>1,
解不等式<,得:x<2,
则不等式组的解集为1<x<2.
19.(6分)解分式方程:﹣=1.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:方程﹣=1,
去分母得:x2﹣4x+4﹣3x=x2﹣2x,
解得:x=,
经检验x=是分式方程的解.
20.(6分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.
(1)求每本甲种词典和每本乙种词典的价格分别为多少元?
(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
【分析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设学校购买甲种词典m本,则购买乙种词典(30﹣m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解答】解:(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,
依题意,得:,
解得:.
答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.
(2)设学校购买甲种词典m本,则购买乙种词典(30﹣m)本,
依题意,得:70m+50(30﹣m)≤1600,
解得:m≤5.
答:学校最多可购买甲种词典5本.
21.(6分)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.
求证:CE=DF.
【分析】由正方形的性质得出OD=OC,∠ODF=∠OCE=45°,再证明∠COE=∠DOF,从而得到△COE≌△DOF,即可证明CE=DF.
【解答】证明:∵四边形ABCD为正方形,
∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,
∴∠DOF+∠COF=90°,
∵∠EOF=90°,即∠COE+∠COF=90°,
∴∠COE=∠DOF,
∴△COE≌△DOF(ASA),
∴CE=DF.
22.(6分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次调查所得数据的众数是 1 部,中位数是 2 部;
(2)扇形统计图中“4部”所在扇形的圆心角为 72 度;
(3)请将条形统计图补充完整;
(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.
【分析】(1)根据读3部的人数和所占的百分比,可以求得本次调查的人数,然后即可得到众数和中位数;
(2)根据统计图中的数据,可以得到扇形统计图中“4部”所在扇形的圆心角的度数;
(3)根据(1)中读2部的人数,可以将条形统计图补充完整;
(4)根据题意,可以画出相应的树状图,从而可以得到相应的概率.
【解答】解:(1)本次调查的人数为:10÷25%=40(人),
读2部的学生有:40﹣2﹣14﹣10﹣8=6(人),
故本次调查所得数据的众数是1部,中位数是(2+2)÷2=2(部),
故答案为:1,2;
(2)扇形统计图中“4部”所在扇形的圆心角为:360°×=72°,
故答案为:72;
(3)由(1)知,读2部的学生有6人,
补全的条形统计图如右图所示;
(4)《西游记》、《三国演义》、《水浒传》、《红楼梦》分别用字母A、B、C、D表示,
树状图如下图所示:
一共有16种可能性,其中他们恰好选中同一名著的可能性有4种,
故他们恰好选中同一名著的概率是,
即他们恰好选中同一名著的概率是.
四、解答题(23、24题每题8分,25、26题每题10分,共36分)
23.(8分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.
(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB.
【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;
(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.
【解答】(1)证明:∵AB是半圆O的直径,
∴∠ACB=∠ADB=90°,
在Rt△CBA与Rt△DAB中,,
∴Rt△CBA≌Rt△DAB(HL);
(2)解:∵BE=BF,由(1)知BC⊥EF,
∴∠E=∠BFE,
∵BE是半圆O所在圆的切线,
∴∠ABE=90°,
∴∠E+∠BAE=90°,
由(1)知∠D=90°,
∴∠DAF+∠AFD=90°,
∵∠AFD=∠BFE,
∴∠AFD=∠E,
∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,
∴∠DAF=∠BAF,
∴AC平分∠DAB.
24.(8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.
(1)求y1,y2对应的函数表达式;
(2)求△AOB的面积;
(3)直接写出当x<0时,不等式ax+b>的解集.
【分析】(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;
(2)由S△AOB=S△AOC+S△BOC,进行计算即可;
(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.
【解答】解:(1)设直线y1=ax+b与y轴交于点D,
在Rt△OCD中,OC=3,tan∠ACO=.
∴OD=2,
即点D(0,2),
把点D(0,2),C(3,0)代入直线y1=ax+b得,b=2,3a+b=0,解得,a=﹣,
∴直线的关系式为y1=﹣x+2;
把A(m,4),B(6,n)代入y1=﹣x+2得,
m=﹣3,n=﹣2,
∴A(﹣3,4),B(6,﹣2),
∴k=﹣3×4=﹣12,
∴反比例函数的关系式为y2=﹣,
因此y1=﹣x+2,y2=﹣;
(2)由S△AOB=S△AOC+S△BOC,
=×3×4+×3×2,
=9.
(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.
25.(10分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地
车型
A地(元/辆)
B地(元/辆)
大货车
900
1000
小货车
500
700
现安排上述装好物资的20辆货车中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求y与x的函数解析式,并直接写出x的取值范围;
(3)若运往A地的物资不少于140吨,求总运费y的最小值.
【分析】(1)设大货车、小货车各有m与n辆,根据题意列出方程组即可求出答案.
(2)根据题中给出的等量关系即可列出y与x的函数关系.
(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.
【解答】解:(1)设大货车、小货车各有m与n辆,
由题意可知:,
解得:
答:大货车、小货车各有12与8辆
(2)设到A地的大货车有x辆,
则到A地的小货车有(10﹣x)辆,
到B地的大货车有(12﹣x)辆,
到B地的小货车有(x﹣2)辆,
∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)
=100x+15600,
其中2≤x≤10.
(3)运往A地的物资共有[15x+10(10﹣x)]吨,
15x+10(10﹣x)≥140,
解得:x≥8,
∴8≤x≤10,
当x=8时,
y有最小值,此时y=100×8+15600=16400元,
答:总运费最小值为16400元.
26.(10分)如图1,在等腰直角三角形ADC中,∠ADC=90°.AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为a(0°<a<90°).如图2,在旋转过程中.
(1)判断△AGD与△CED是否全等,并说明理由;
(2)当CE=CD时,AG与EF交于点H,求GH的长.
【分析】(1)由“SAS”可证△ADG≌△CDE;
(2)由全等三角形的性质可求AG=AD=4,由等腰三角形的性质可得TG=DT=1,在Rt△AGT中,由勾股定理可求AT的长,通过证明△GFH∽△ATG,可得,即可求解.
【解答】解:(1)结论:△AGD≌△CED,
理由:∵四边形EFGD是正方形,
∴DG=DE,∠GDE=90°,
∵DA=DC,∠ADC=90°,
∴∠GDE=∠ADC,
∴∠ADG=∠CDE,
在△ADG和△CDE中,
,
∴△AGD≌△CED(SAS);
(2)如图2中,过点A作AT⊥GD于T,
∵△AGD≌△CED,CD=CE,
∴AD=AG=4,
∵AT⊥GD,
∴TG=TD=1,
∴,
∵EF∥DG,
∴∠GHF=∠AGT,
∵∠F=∠ATG=90°,
∴△GFH∽△ATG,
∴,
∴,
∴.
2023年宁夏吴忠市同心县中考数学模拟试卷(含解析): 这是一份2023年宁夏吴忠市同心县中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年宁夏吴忠市同心县中考数学模拟试卷(含解析): 这是一份2023年宁夏吴忠市同心县中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年宁夏吴忠市盐池县中考数学二模试卷(含解析): 这是一份2023年宁夏吴忠市盐池县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。