2020年山东省菏泽市中考数学试卷
展开
2020年山东省菏泽市中考数学试卷
题号
一
二
三
四
总分
得分
一、选择题(本大题共8小题,共24.0分)
1. 下列各数中,绝对值最小的数是( )
A. -5 B. C. -1 D.
2. 函数y=的自变量x的取值范围是( )
A. x≠5 B. x>2且x≠5 C. x≥2 D. x≥2且x≠5
3. 在平面直角坐标系中,将点P(-3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为( )
A. (0,-2) B. (0,2) C. (-6,2) D. (-6,-2)
4. 一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )
A. B. C. D.
5. 如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )
A. 互相平分 B. 相等 C. 互相垂直 D. 互相垂直平分
6. 如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED等于( )
A. B. α C. α D. 180°-α
7. 等腰三角形的一边长是3,另两边的长是关于x的方程x2-4x+k=0的两个根,则k的值为( )
A. 3 B. 4 C. 3或4 D. 7
8. 一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
二、填空题(本大题共6小题,共18.0分)
9. 计算(-4)(+4)的结果是______.
10. 方程的解是______.
11. 如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为______.
12. 从-1,2,-3,4这四个数中任取两个不同的数分别作为a,b的值,得到反比例函数y=,则这些反比例函数中,其图象在二、四象限的概率是______.
13. 如图,在菱形OABC中,OB是对角线,OA=OB=2,⊙O与边AB相切于点D,则图中阴影部分的面积为______.
14. 如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为______.
三、计算题(本大题共2小题,共12.0分)
15. 某兴趣小组为了测量大楼CD的高度,先沿着斜坡AB走了52米到达坡顶点B处,然后在点B处测得大楼顶点C的仰角为53°,已知斜坡AB的坡度为i=1:2.4,点A到大楼的距离AD为72米,求大楼的高度CD.
(参考数据:sin53°≈,cos53°≈,tan53°≈)
16. 如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.
(1)求证:DE⊥AC;
(2)若⊙O的半径为5,BC=16,求DE的长.
四、解答题(本大题共8小题,共64.0分)
17. 计算:2-1+|-3|+2sin45°-(-2)2020•()2020.
18. 先化简,再求值:(2a-)÷,其中a满足a2+2a-3=0.
19. 如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.
20. 某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100,并绘制出如图不完整的统计图.
(1)求被抽取的学生成绩在C:80≤x<90组的有多少人?
(2)所抽取学生成绩的中位数落在哪个组内?
(3)若该学校有1500名学生,估计这次竞赛成绩在A:60≤x<70组的学生有多少人?
21. 如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,2),B(n,-1)两点.
(1)求一次函数和反比例函数的表达式;
(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.
22. 今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.
(1)求购买一根跳绳和一个毽子分别需要多少元?
(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.
23. 如图1,四边形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD+CD.
(1)过点A作AE∥DC交BD于点E,求证:AE=BE;
(2)如图2,将△ABD沿AB翻折得到△ABD'.
①求证:BD'∥CD;
②若AD'∥BC,求证:CD2=2OD•BD.
24. 如图,抛物线y=ax2+bx-6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
(1)求抛物线的函数表达式;
(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.
答案和解析
1.【答案】B
【解析】解:∵|-5|=5,||=,|-1|=1,||=,
∴绝对值最小的数是.
故选:B.
根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.
本题考查的是实数的大小比较,熟知绝对值的性质是解答此题的关键.
2.【答案】D
【解析】解:由题意得x-2≥0且x-5≠0,
解得x≥2且x≠5.
故选:D.
根据被开方数大于等于0,分母不等于0列式计算即可得解.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
3.【答案】A
【解析】解:∵将点P(-3,2)向右平移3个单位得到点P',
∴点P'的坐标是(0,2),
∴点P'关于x轴的对称点的坐标是(0,-2).
故选:A.
先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P'的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答.
本题考查了坐标与图形变化-平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.
4.【答案】A
【解析】解:从正面看所得到的图形为.
故选:A.
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数画出图形即可.
考查几何体的三视图的画法,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.
5.【答案】C
【解析】解:由矩形的性质知,矩形的四角为直角,即每组邻边互相垂直,故原四边形的对角线应互相垂直.
故选:C.
由于顺次连接四边各边中点得到的四边形是平行四边形,有对应边与原对角线平行,由矩形的性质可知,应为对角线互相垂直的四边形.
此题主要考查了矩形的判定定理(有一个角为直角的平行四边形为矩形),难度不大.
6.【答案】D
【解析】解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,
∴∠ABE+∠ADE=180°,
∴∠BAD+∠BED=180°,
∵∠BAD=α,
∴∠BED=180°-α.
故选:D.
证明∠ABE+∠ADE=180°,推出∠BAD+∠BED=180°即可解决问题.
本题考查旋转的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
7.【答案】C
【解析】解:当3为腰长时,将x=3代入x2-4x+k=0,得:32-4×3+k=0,
解得:k=3;
当3为底边长时,关于x的方程x2-4x+k=0有两个相等的实数根,
∴△=(-4)2-4×1×k=0,
解得:k=4,此时两腰之和为4,4>3,符合题意.
∴k的值为3或4.
故选:C.
当3为腰长时,将x=3代入原一元二次方程可求出k的值;当3为底边长时,利用等腰三角形的性质可得出根的判别式△=0,解之可得出k值,利用根与系数的关系可得出两腰之和,将其与3比较后可得知该结论符合题意.
本题考查了根的判别式、一元二次方程的解、等腰三角形的性质、三角形三边关系以及根与系数的关系,分3为腰长及3为底边长两种情况,求出k值是解题的关键.
8.【答案】B
【解析】解:A、由抛物线可知,a>0,b<0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项错误;
B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项正确;
C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项错误;
D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项错误.
故选:B.
先由二二次函数y=ax2+bx+c的图象得到字母系数的正负,再与一次函数y=acx+b的图象相比较看是否一致.
本题考查二次函数和一次函数的图象,解题的关键是明确一次函数和二次函数性质.
9.【答案】-13
【解析】解:原式=()2-42
=3-16
=-13.
故答案为:-13.
直接利用二次根式的混合运算法则计算得出答案.
此题主要考查了二次根式的混合运算,正确运用乘法公式是解题关键.
10.【答案】x=
【解析】解:方程=,
去分母得:(x-1)2=x(x+1),
整理得:x2-2x+1=x2+x,
解得:x=,
经检验x=是分式方程的解.
故答案为:x=.
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
11.【答案】
【解析】解:过点D作DE⊥BC,垂足为E,
∵∠ACB=90°,DE⊥BC,
∴DE∥AC,
又∵点D为AB边的中点,
∴BE=EC=BC=2,
在Rt△DCE中,cos∠DCB==,
故答案为:.
过点D作DE⊥BC,由平行线平分线段定理可得E是BC的中点,再根据三角函数的意义,可求出答案.
考查直角三角形的边角关系,理解直角三角形的边角关系是得出正确答案的前提,作高构造直角三角形是常用的方法.
12.【答案】
【解析】解:画树状图得:
则共有12种等可能的结果,
∵反比例函数y=中,图象在二、四象限,
∴ab<0,
∴有8种符合条件的结果,
∴P(图象在二、四象限)==,
故答案为:.
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,然后利用概率公式求解即可求得答案.
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
13.【答案】2-π
【解析】解:连接OD,
∵四边形OABC为菱形,
∴OA=AB,
∵OA=OB,
∴OA=OB=AB,
∴△OAB为等边三角形,
∴∠A=∠AOB=60°,
∵AB是⊙O的切线,
∴OD⊥AB,
∴OD=OA•cosA=,
同理可知,△OBC为等边三角形,
∴∠BOC=60°,
∴图中阴影部分的面积=2×-=2-π,
故答案为:2-π.
连接OD,根据菱形的性质得到OA=AB,得到△OAB为等边三角形,根据切线的性质得到OD⊥AB,根据余弦的定义求出OD,根据菱形面积公式、扇形面积公式计算,得到答案.
本题考查的是切线的性质、扇形面积计算、等边三角形的判定和性质,掌握切线的性质定理、扇形面积公式是解题的关键.
14.【答案】3
【解析】解:∵矩形ABCD中,AB=5,AD=12,∠BAD=∠BCD=90°,
∴BD==13,
∵BP=BA=5,
∴PD=BD-BP=8,
∵BA=BP,
∴∠BAP=∠BPA=∠DPQ,
∵AB∥CD,
∴∠BAP=∠DQP,
∴∠DPQ=∠DQP,
∴DQ=DP=8,
∴CQ=DQ-CD=DQ-AB=8-5=3,
∴在Rt△BCQ中,根据勾股定理,得
BQ===3.
故答案为:3.
根据矩形的性质可得BD=13,再根据BP=BA可得DQ=DP=8,所以得CQ=3,在Rt△BCQ中,根据勾股定理即可得BQ的长.
本题考查了矩形的性质、勾股定理、等腰三角形的性质,解决本题的关键是综合运用以上知识.
15.【答案】解:如图,过点B作BE⊥AD于点D,BF⊥CD于点F,
∵CD⊥AD,
∴四边形BEDF是矩形,
∴FD=BE,FB=DE,
在Rt△ABE中,BE:AE=1:2.4=5:12,
设BE=5x,AE=12x,
根据勾股定理,得
AB=13x,
∴13x=52,
解得x=4,
∴BE=FD═5x=20,
AE=12x=48,
∴DE=FB=AD-AE=72-48=24,
∴在Rt△CBF中,CF=FB×tan∠CBF≈24×≈32,
∴CD=FD+CF=20+32=52(米).
答:大楼的高度CD约为52米.
【解析】如图,过点B作BE⊥AD于点D,BF⊥CD于点F,可得四边形BEDF是矩形,根据斜坡AB的坡度为i=1:2.4,利用勾股定理可得x的值,再根据锐角三角函数即可求大楼的高度CD.
本题考查了解直角三角形的应用-仰角俯角问题和坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.
16.【答案】(1)证明:连接AD、OD.
∵AB是圆O的直径,
∴∠ADB=90°.
∴∠ADO+∠ODB=90°.
∵DE是圆O的切线,
∴OD⊥DE.
∴∠EDA+∠ADO=90°.
∴∠EDA=∠ODB.
∵OD=OB,
∴∠ODB=∠OBD.
∴∠EDA=∠OBD.
∵AC=AB,AD⊥BC,
∴∠CAD=∠BAD.
∵∠DBA+∠DAB=90°,
∴∠EAD+∠EDA=90°.
∴∠DEA=90°.
∴DE⊥AC.
(2)解:∵∠ADB=90°,AB=AC,
∴BD=CD,
∵⊙O的半径为5,BC=16,
∴AC=10,CD=8,
∴AD==6,
∵S△ADC=AC•DE,
∴DE===.
【解析】(1)连接AD、OD.先证明∠ADB=90°,∠EDO=90°,从而可证明∠EDA=∠ODB,由OD=OB可得到∠EDA=∠OBD,由等腰三角形的性质可知∠CAD=∠BAD,故此∠EAD+∠EDA=90°,由三角形的内角和定理可知∠DEA=90°,于是可得到DE⊥AC.
(2)由等腰三角形的性质求出BD=CD=8,由勾股定理求出AD的长,根据三角形的面积得出答案.
本题考查了圆周角定理,切线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理,三角形的面积等知识,掌握切线的性质是解题的关键.
17.【答案】解:原式=+3-+2×-(-2×)2020
=+3-+-1
=2.
【解析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案.
此题主要考查了实数运算,正确化简各数是解题关键.
18.【答案】解:原式=(-)÷
=•
=•
=2a(a+2)
=2(a2+2a),
∵a2+2a-3=0,
∴a2+2a=3,
则原式=2×3=6.
【解析】先根据分式的混合运算顺序和运算法则化简原式,将最后结果变形为2(a2+2a),再由已知等式变形得出a2+2a=3,继而代入计算可得.
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
19.【答案】证明:∵ED⊥AB,
∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,
∴△ABC≌△AED(AAS),
∴AE=AB,AC=AD,
∴CE=BD.
【解析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.
本题考查了全等三角形的判定和性质,证明△ABC≌△AED是本题的关键.
20.【答案】解:(1)本次抽取的学生有:12÷20%=60(人),
C组学生有:60-6-12-18=24(人),
即被抽取的学生成绩在C:80≤x<90组的有24人;
(2)所抽取学生成绩的中位数落在C:80≤x<90这一组内;
(3)1500×=150(人),
答:这次竞赛成绩在A:60≤x<70组的学生有150人.
【解析】(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,即可得到C组的人数;
(2)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;
(3)根据条形统计图中的数据,可以计算出这次竞赛成绩在A:60≤x<70组的学生有多少人.
本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.
21.【答案】解:(1)将点A(1,2)代入y=,得:m=2,
∴y=,
当y=-1时,x=-2,
∴B(-2,-1),
将A(1,2)、B(-2,-1)代入y=kx+b,
得:,
解得,
∴y=x+1;
∴一次函数解析式为y=x+1,反比例函数解析式为y=;
(2)在y=x+1中,当y=0时,x+1=0,
解得x=-1,
∴C(-1,0),
设P(m,0),
则PC=|-1-m|,
∵S△ACP=•PC•yA=4,
∴×|-1-m|×2=4,
解得m=3或m=-5,
∴点P的坐标为(3,0)或(-5,0).
【解析】(1)先根据点A坐标求出反比例函数解析式,再求出点B的坐标,继而根据点A、B坐标可得直线解析式;
(2)先根据直线解析式求出点C的坐标,再设P(m,0),知PC=|-1-m|,根据S△ACP=•PC•yA=4求出m的值即可得出答案.
本题主要考查反比例函数与一次函数的交点问题,解题的关键是掌握待定系数法求函数解析式及两点间的距离公式、三角形的面积问题.
22.【答案】解:(1)设购买一根跳绳需要x元,购买一个毽子需要y元,
依题意,得:,
解得:.
答:购买一根跳绳需要6元,购买一个毽子需要4元.
(2)设购买m根跳绳,则购买(54-m)个毽子,
依题意,得:,
解得:20<m≤22.
又∵m为正整数,
∴m可以为21,22.
∴共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.
【解析】(1)设购买一根跳绳需要x元,购买一个毽子需要y元,根据“购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买m根跳绳,则购买(54-m)个毽子,根据购买的总费用不能超过260元且购买跳绳的数量多于20根,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出各购买方案.
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
23.【答案】(1)证明:∵AE∥DC,
∴∠CDO=∠AEO,∠EAO=∠DCO,
又∵OA=OC,
∴△AOE≌△COD(AAS),
∴CD=AE,OD=OE,
∵OB=OE+BE,OB=OD+CD,
∴BE=CD,
∴AE=BE;
(2)①证明:如图1,过点A作AE∥DC交BD于点E,
由(1)可知△AOE≌△COD,AE=BE,
∴∠ABE=∠AEB,
∵将△ABD沿AB翻折得到△ABD',
∴∠ABD'=∠ABD,
∴∠ABD'=∠BAE,
∴BD'∥AE,
又∵AE∥CD
∴BD'∥CD.
②证明:如图2,过点A作AE∥DC交BD于点E,延长AE交BC于点F,
∵AD'∥BC,BD'∥AE,
∴四边形AD'BF为平行四边形.
∴∠D'=∠AFB,
∵将△ABD沿AB翻折得到△ABD'.
∴∠D'=∠ADB,
∴∠AFB=∠ADB,
又∵∠AED=∠BEF,
∴△AED∽△BEF,
∴,
∵AE=CD,
∴,
∵EF∥CD,
∴△BEF∽△BDC,
∴=,
∴,
∴CD2=DE•BD,
∵△AOE≌△COD,
∴OD=OE,
∴DE=2OD,
∴CD2=2OD•BD.
【解析】(1)证明△AOE≌△COD(AAS),由全等三角形的性质得出CD=AE,OD=OE,则可得出结论;
(2)①过点A作AE∥DC交BD于点E,由(1)得出∠ABE=∠AEB,由折叠的性质可得出∠ABD'=∠BAE,则BD'∥AE,可得出结论;
②过点A作AE∥DC交BD于点E,延长AE交BC于点F,证明△AED∽△BEF,得出,证明△BEF∽△BDC,由相似三角形的性质得出=,根据AE=CD,DE=2OD可得出结论.
本题是相似形综合题,考查了翻折的性质,全等三角形的判定与性质,相似三角形的判定与性质,平行线的判定与性质,等腰三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.
24.【答案】解:(1)∵OA=2,OB=4,
∴A(-2,0),B(4,0),
把A(-2,0),B(4,0)代入抛物线y=ax2+bx-6中得:,
∴抛物线的解析式为:y=x2-x-6;
(2)如图1,过D作DG⊥x轴于G,交BC于H,
当x=0时,y=-6,
∴C(0,-6),
设BC的解析式为:y=kx+b,
则,解得:,
∴BC的解析式为:y=x-6,
设D(x,x2-x-6),则H(x,x-6),
∴DH=x-6-(x2-x-6)=-,
∵△BCD的面积是,
∴,
∴,
解得:x=1或3,
∵点D在直线l右侧的抛物线上,
∴D(3,-),
∴△ABD的面积===;
(3)分两种情况:
①如图2,N在x轴的上方时,四边形MNBD是平行四边形,
∵B(4,0),D(3,-),且M在x轴上,
∴N的纵坐标为,
当y=时,即x2-x-6=,
解得:x=1+或1-,
∴N(1-,)或(1+,);
②如图3,点N在x轴的下方时,四边形BDNM是平行四边形,此时M与O重合,
∴N(-1,-);
综上,点N的坐标为:(1-,)或(1+,)或(-1,-).
【解析】(1)根据OA=2,OB=4确定点A和B的坐标,代入抛物线的解析式列方程组解出即可;
(2)如图1,过D作DG⊥x轴于G,交BC于H,利用待定系数法求直线BC的解析式,设D(x,x2-x-6),则H(x,x-6),表示DH的长,根据△BCD的面积是,列方程可得x的值,因为D在对称轴的右侧,所以x=1不符合题意,舍去,利用三角形面积公式可得结论;
(3)分两种情况:N在x轴的上方和下方,根据y=确定N的坐标,并正确画图.
此题主要考查二次函数的综合问题,会求函数与坐标轴的交点,会利用待定系数法求函数解析式,会利用数形结合的思想解决平行四边形的问题,并结合方程思想解决问题.
2016年山东省菏泽市中考数学试卷与答案: 这是一份2016年山东省菏泽市中考数学试卷与答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省菏泽市中考数学试卷: 这是一份2023年山东省菏泽市中考数学试卷,共30页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
2023年山东省菏泽市中考数学试卷: 这是一份2023年山东省菏泽市中考数学试卷,共30页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。