所属成套资源:2021年中考数学暑假知识点复习(基础+重点)
专题五 平行四边形与圆-2021年中考数学暑假知识点复习(重点)
展开
这是一份专题五 平行四边形与圆-2021年中考数学暑假知识点复习(重点),共5页。试卷主要包含了平行四边形与圆等内容,欢迎下载使用。
一、平行四边形
1、四边形
定义1:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
定义2:多边形相邻两边组成的角叫做它的内角。多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
定义3:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
定义4:各个角都相等,各条边都相等的多边形叫做正多边形。
n边形内角和等于(n-2)×180°,对角线条数为。多边形的外角和等于360°。
2、平行四边形
(1)定义
两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
(2)平行四边形的性质
平行四边形的对边平行且相等;
平行四边形的对角相等;
平行四边形的对角线互相平分。
平行四边形的判定
两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形。
(4)两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
(5)平行四边形的面积
S平行四边形=底×高
(6)中位线
定义:连接三角形两边中点的线段叫做三角形的中位线。
中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
3、矩形
(1)定义
有一个角是直角的平行四边形叫做矩形。
(2)矩形的性质
矩形具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等。
推论:直角三角形斜边上的中线等于斜边的一半。
(3)矩形的判定
有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形。
4、菱形
(1)定义
有一组邻边相等的平行四边形叫做菱形。
(2)菱形的性质
菱形具有平行四边形的一切性质;
菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线都平分一组对角。
(3)菱形的判定
一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四条边相等的四边形是菱形。
(4)菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
5、正方形
正方形是最特殊的四边形,它具有矩形的性质,也具有菱形的性质。
二、 圆
1、圆
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。
连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。小于半圆的弧叫做劣弧。大于半圆的弧叫做优弧。
能够重合的两个圆叫做等圆。在同圆或等圆中,能重合的弧叫等弧。
2、垂径定理
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
弦的垂直平分线过圆心,且平分弦对的两条弧.
3、弧、弦、圆心角之间的关系
定义:顶点在圆心的角叫做圆心角。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等
4、圆周角
定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆内接四边形的性质:圆内接四边形的对角互补。
5、点和圆的位置关系
设⊙O的半径为r,点P到圆心的距离为OP=d,则有:
点P在圆外d>r ;
点P在圆上d=r ;
点P在圆内d<r 。
性质:不在同一条直线上的三个点确定一个圆。
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。
6、直线和圆的位置关系
直线和圆有两个公共点时,我们说这条直线和圆相交。这条直线叫做圆的割线。
直线和圆只有一个公共点时,我们说这条直线和圆相切。这条直线叫做圆的切线,这个点叫做切点。
直线和圆没有公共点时,我们说这条直线和圆相离。
设⊙O的半径为r,圆心O到直线l的距离d,则有:
直线l和⊙O相交d<r ;
直线l和⊙O相切d=r ;
直线l和⊙O相离d>r 。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的性质定理:圆的切线垂直于过切点的半径。
经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
与三角形各边都相切的圆叫做三角形的内切圆。内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
7、正多边形和圆
定义:正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心正多边形的一边的距离叫做正多边形的边心距。
8、弧长和扇形面积
n°的圆心角所对的弧长l为:。
圆心角为n°的扇形面积S为:;
圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为 ,全面积为,母线长、圆锥高、底面圆的半径之间有.
圆锥与侧面展开图的等量关系:,
相关试卷
这是一份初中数学中考复习 专题16 圆-2021年中考数学总复习知识点梳理(全国通用),共2页。试卷主要包含了垂径定理,圆周角,点和圆的位置关系,直线和圆的位置关系[来源,正多边形和圆,弧长和扇形面积等内容,欢迎下载使用。
这是一份6.3 与圆有关的计算-中考数学一轮复习 知识点+练习,文件包含63与圆有关的计算-解析版docx、63与圆有关的计算-原卷版docx等2份试卷配套教学资源,其中试卷共117页, 欢迎下载使用。
这是一份中考复习专题十五 圆 知识点总结与练习,共12页。

