2014年高考数学(理)真题分类汇编:统计
展开I1 随机抽样
2.[2014·湖南卷] 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1 C.p1=p3<p2 D.p1=p2=p3
2.D
9.[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.
9.60
I2 用样本估计总体
6.[2014·广东卷] 已知某地区中小学生人数和近视情况分别如图11和图12所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
图11 图12
A.200,20 B.100,20 C.200,10 D.100,10
6.A
17.、[2014·广东卷] 随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如下:
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.
18.[2014·辽宁卷] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图14所示.
图14
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
18.解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此
P(A1)=(0.006+0.004+0.002)×50=0.6,
P(A2)=0.003×50=0.15,
P(B)=0.6×0.6×0.15×2=0.108.
(2)X可能取的值为0,1,2,3,相应的概率分别为
P(X=0)=Ceq \\al(0,3)·(1-0.6)3=0.064, P(X=1)=Ceq \\al(1,3)·0.6(1-0.6)2=0.288,
P(X=2)=Ceq \\al(2,3)·0.62(1-0.6)=0.432, P(X=3)=Ceq \\al(3,3)·0.63=0.216.
X的分布列为
因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.
18.[2014·新课标全国卷Ⅰ] 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图14所示的频率分布直方图:
图14
(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数eq \(x,\s\up6(-)),σ2近似为样本方差s2.
(i)利用该正态分布,求P(187.8
附:eq \r(150)≈12.2.
若Z~N(μ,σ2),则p(μ-σ
eq \(x,\s\up6(-))=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.
(2)(i)由(1)知,Z~N(200,150),从而P(187.8
7.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
图11
A. 6 B. 8 C. 12 D. 18
7.C
9.[2014·陕西卷] 设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )
A.1+a,4 B.1+a,4+a C.1,4 D.1,4+a
9.A
I3 正态分布
18.、[2014·新课标全国卷Ⅰ] 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图14所示的频率分布直方图:
图14
(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数eq \(x,\s\up6(-)),σ2近似为样本方差s2.
(i)利用该正态分布,求P(187.8
附:eq \r(150)≈12.2.
若Z~N(μ,σ2),则p(μ-σ
eq \(x,\s\up6(-))=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.
(2)(i)由(1)知,Z~N(200,150),从而P(187.8
I4 变量的相关性与统计案例
3.[2014·重庆卷] 已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是( )
A.y^=0.4x+2.3 B.y^=2x-2.4
C.y^=-2x+9.5 D.y^=-0.3x+4.4
3.A
4.[2014·湖北卷] 根据如下样本数据:
得到的回归方程为eq \(y,\s\up6(^))=bx+a,则( )
A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0
4.B
6.[2014·江西卷] 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )
表1 表2
表3 表4
A.成绩 B.视力 C.智商 D.阅读量
6.D
19.[2014·新课标全国卷Ⅱ] 某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
19.解:(1)由所给数据计算得eq \(t,\s\up6(-))=eq \f(1,7)(1+2+3+4+5+6+7)=4,eq \(y,\s\up6(-))=eq \f(1,7)(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,
=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,
eq \(a,\s\up6(^))=eq \(y,\s\up6(-))-eq \(b,\s\up6(^))eq \(t,\s\up6(-))=4.3-0.5×4=2.3,
所求回归方程为eq \(y,\s\up6(^))=0.5t+2.3.
(2)由(1)知,eq \(b,\s\up6(^))=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.
将2015年的年份代号t=9,代入(1)中的回归方程,得eq \(y,\s\up6(^))=0.5×9+2.3=6.8,
故预测该地区2015年农村居民家庭人均纯收入为6.8千元.分组
频数
频率
[25,30]
3
0.12
(30,35]
5
0.20
(35,40]
8
0.32
(40,45]
n1
f1
(45,50]
n2
f2
X
0
1
2
3
P
0.064
0.288
0.432
0.216
x
3
4
5
6
7
8
y
4.0
2.5
-0.5
0.5
-2.0
-3.0
成绩
性别
不及格
及格
总计
男
6
14
20
女
10
22
32
总计
16
36
52
视力
性别
好
差
总计
男
4
16
20
女
12
20
32
总计
16
36
52
智商
性别
偏高
正常
总计
男
8
12
20
女
8
24
32
总计
16
36
52
阅读量
性别
丰富
不丰
富
总计
男
14
6
20
女
2
30
32
总计
16
36
52
年份
2007
2008
2009
2010
2011
2012
2013
年份代号t
1
2
3
4
5
6
7
人均纯收入y
2.9
3.3
3.6
4.4
4.8
5.2
5.9
2021_2023年高考数学真题分类汇编专题15概率与统计理: 这是一份2021_2023年高考数学真题分类汇编专题15概率与统计理,共12页。试卷主要包含了,得到如下数据等内容,欢迎下载使用。
2011-2020年高考数学真题分类汇编 专题32 概率和统计【理】(含解析): 这是一份2011-2020年高考数学真题分类汇编 专题32 概率和统计【理】(含解析),共94页。试卷主要包含了故选C等内容,欢迎下载使用。
2022高考数学真题分类汇编09概率与统计: 这是一份2022高考数学真题分类汇编09概率与统计,共16页。试卷主要包含了概率统计,单选题,填空题,解答题等内容,欢迎下载使用。