![2021年高考艺术生数学基础复习 考点20 超几何分布与二项分布(教师版含解析)第1页](http://m.enxinlong.com/img-preview/3/3/5959214/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年高考艺术生数学基础复习 考点20 超几何分布与二项分布(教师版含解析)第2页](http://m.enxinlong.com/img-preview/3/3/5959214/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年高考艺术生数学基础复习 考点20 超几何分布与二项分布(教师版含解析)第3页](http://m.enxinlong.com/img-preview/3/3/5959214/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021年高考数学艺术生复习基础讲义(教师版+学生版)
2021年高考艺术生数学基础复习 考点20 超几何分布与二项分布(教师版含解析)
展开
这是一份2021年高考艺术生数学基础复习 考点20 超几何分布与二项分布(教师版含解析),共33页。
考点20 超几何分布与二项分布
知识理解
一. 分布列
1.离散型随机变量的分布列
(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量.
(2)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则称表
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
为离散型随机变量X的概率分布列,简称为X的分布列,具有如下性质:
①pi≥0,i=1,2,…,n;②p1+p2+…+pi+…+pn=1.
离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.
二.两点分布
如果随机变量X的分布列为
X
0
1
P
1-p
p
其中0300
空气质量
优
良
轻微污
轻度污
中度污
中度重污
重污染
我们把空气污染指数在0~100内的称为A类天,在101~200内的称为B类天,大于200的称为C类天.某市从2014年全年空气污染指数的监测数据中随机抽取了18天的数据制成如下茎叶图(百位为茎):
(1)从这18天中任取3天,求至少含2个A类天的概率;
(2)从这18天中任取3天,记X是达到A类天或B类天的天数,求X的分布列.
【答案】(1);(2)分布列见解析.
【解析】(1)从这18天中任取3天,取法种数为种不同的取法,
其中3天中至少有2个A类天的取法种数为种,
所以这3天至少有2个A类天的概率为.
(2)的所有可能取值是,
当时,,当时,,
当时,,当时,,
所以的分布列为
3
2
1
0
22.(2020·全国高三专题练习)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?
【答案】(1);(2)选择第二种方案更合算.
【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,
设顾客享受到免单优惠为事件,则,
所以两位顾客均享受到免单的概率为;
(2)若选择方案一,设付款金额为元,则可能的取值为、、、.
,,
,.
故的分布列为,
所以(元).
若选择方案二,设摸到红球的个数为,付款金额为,则,
由已知可得,故,
所以(元).
因为,所以该顾客选择第二种抽奖方案更合算.
23.(2020·全国高三专题练习)某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.
(1)求抽取的5人中男、女员工的人数分别是多少;
(2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.设选出的3人中女员工人数为X,求随机变量X的分布列和数学期望;
(3)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记,试比较与的大小.(只需写出结论)
【答案】(1)男员工3人,女员工2人;(2)分布列见解析,;(3).
【解析】(1)抽取的5人中男员工的人数为,
女员工的人数为.
(2)由(1)可知,抽取的5名员工中,有男员工3人,女员工2人.
所以,随机变量X的所有可能取值为0,1,2.
根据题意,,
,.
随机变量X的分布列是:
X
0
1
2
P
数学期望.
(3).
24.(2020·辽宁高三月考)江苏实行的“新高考方案:”模式,其中统考科目:“”指语文、数学、外语三门,不分文理:学生根据高校的要求,结合自身特长兴趣,“”指首先在在物理、历史门科目中选择一门;“”指再从思想政治、地理、化学、生物门科目中选择门某校,根据统计选物理的学生占整个学生的;并且在选物理的条件下,选择地理的概率为;在选历史的条件下,选地理的概率为.
(1)求该校最终选地理的学生概率;
(2)该校甲、乙、丙三人选地理的人数设为随机变量.
①求随机变量的概率;
②求的概率分布列以及数学期望.
【答案】(1);(2)①;②分布列见解析,.
【解析】(1)该校最终选地理的学生为事件,;
因此,该校最终选地理的学生为;
(2)①由题意可知,,所以,;
②由于,则,
,,
,
所以,随机变量的分布列如下表所示:
.
25.(2020·渝中区·重庆巴蜀中学高三其他模拟)甲、乙两名同学进行乒乓球比赛,规定每一局比赛获胜方记1分,失败方记0分,谁先获得5分就获胜,比赛结束,假设每局比赛甲获胜的概率都是.
(1)求比赛结束时恰好打了7局的概率;
(2)若现在的比分是3比1甲领先,记表示结束比赛还需打的局数,求的分布列及期望.
【答案】(1);(2)分布列见解析,.
【解析】(1)恰好打了7局甲获胜的概率是,
恰好打了7局乙获胜的概率是,
故比赛结束时恰好打了7局的概率.
(2)的可能取值为,
,,
,,
故的分布列为
2
3
4
5
则的数学期望.
26.(2020·全国高三专题练习)某班有名班干部,其中男生人,女生人,任选人参加学校的义务劳动.
(1)求男生甲或女生乙被选中的概率;
(2)设“男生甲被选中”为事件,“女生乙被选中”为事件,求和.
【答案】(1);(2),.
【解析】(1)某班从名班干部(男生人、女生人)中任选人参加学校的义务劳动,总的选法有种,
男生甲或女生乙都没有被选中的选法:
则男生甲或女生乙被选中的选法有种,
∴男生甲或女生乙被选中的概率为;
(2)总的选法有种,男生甲被选中的选法有种,∴,
男生甲被选中、女生乙也被选中选法有种,∴,
∴在男生甲被选中的前提下,女生乙也被选中的概率为.
相关教案
这是一份2021年高考艺术生数学基础复习 考点42 圆的方程(教师版含解析),共18页。教案主要包含了圆的方程,点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系等内容,欢迎下载使用。
这是一份2021年高考艺术生数学基础复习 考点04 复数(教师版含解析),共12页。教案主要包含了复数的实部与虚部,复数的象限,复数的模长,复数的分类,复数的轨迹等内容,欢迎下载使用。
这是一份2021年高考艺术生数学基础复习 考点44 双曲线(教师版含解析),共29页。教案主要包含了直线与曲线的位置关系,弦长,离心率与渐近线等内容,欢迎下载使用。