数学九年级下册第二章 二次函数4 二次函数的应用公开课教案设计
展开课时2 销售利润问题
1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.
2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.
运用二次函数的知识求出实际问题的最大值、最小值.
运用二次函数的知识求出实际问题的最大值、最小值.
某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?
活动1:小组合作
二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则
①当a>0时,y有最小值k;
②当a<0时,y有最大值k
【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.
请你帮助分析,销售单价是多少时,可以获利最多?
【解析】设销售单价为x (x≤13.5)元,那么
销售量可以表示为 : 件;
每件T恤衫的利润为: 元;
所获总利润可以表示为: 元;
即y=-200x2+3 700x-8 000=-200(x-9.25)2+9 112.5
∴当销售单价为 元时,可以获得最大利润,
最大利润是 元.
活动2:探究归纳
先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.
例1.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围.
(2)设宾馆一天的利润为w元,求w与x的函数关系式.
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
【解析】
(1)y=50-;
(2)w=(180+x-20)y=(180+x-20)(50-)=
(3)因为w=
所以x==170时,w有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- =34,
此时的利润为10 880元.
例2 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.
(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?
【解析】(1)设每千克应涨价x元,列方程,得
(5+x)(200-10x)=1 500,
解得x1=10, x2=5.因为要顾客得到实惠,5<10,所以x=5.
答:每千克应涨价5元.
(2)设商场每天获得的利润为y元,则根据题意,得
y=( x +5)(200-10x)= -10x2+150x+1 000,
当x=时,y有最大值.
因此,这种水果每千克涨价7.5元,能使商场获利最多
“何时获得最大利润” 问题解决的基本思路.
1.根据实际问题列出二次函数关系式.
2.根据二次函数的最值问题求出最大利润
数学九年级下册1.5 二次函数的应用第2课时教案设计: 这是一份数学九年级下册<a href="/sx/tb_c25113_t8/?tag_id=27" target="_blank">1.5 二次函数的应用第2课时教案设计</a>,共5页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。
初中数学北师大版九年级下册4 二次函数的应用教学设计: 这是一份初中数学北师大版九年级下册<a href="/sx/tb_c102697_t8/?tag_id=27" target="_blank">4 二次函数的应用教学设计</a>,共7页。
初中数学北师大版九年级下册4 二次函数的应用教学设计: 这是一份初中数学北师大版九年级下册4 二次函数的应用教学设计,共27页。教案主要包含了导入课题,触类旁通的能力.,课后反馈,板书设计,函数模型等内容,欢迎下载使用。