![初中数学人教七下第九章测试卷(3)第1页](http://m.enxinlong.com/img-preview/2/3/5905687/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学人教七下第九章测试卷(3)第2页](http://m.enxinlong.com/img-preview/2/3/5905687/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学人教七下第九章测试卷(3)第3页](http://m.enxinlong.com/img-preview/2/3/5905687/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版数学七年级下册 全册单元练习卷
- 初中数学人教七下第九章测试卷(1) 试卷 4 次下载
- 初中数学人教七下第九章测试卷(2) 试卷 4 次下载
- 初中数学人教七下第十章测试卷(1) 试卷 2 次下载
- 初中数学人教七下第十章测试卷(3) 试卷 1 次下载
- 初中数学人教七下第十章测试卷(2) 试卷 2 次下载
初中数学人教版七年级下册第九章 不等式与不等式组综合与测试精品课时作业
展开
这是一份初中数学人教版七年级下册第九章 不等式与不等式组综合与测试精品课时作业,共15页。试卷主要包含了不等式组的解集为 ,范围为 mg等内容,欢迎下载使用。
单元测验卷 一.选择题1.(3分)下列不等式组中,无解的是( )A. B.C. D.2.(3分)若|x﹣1|=1﹣x,则x的值范围是( )A.x≤1 B.x<1 C.x≥1 D.x>13.(3分)不等式组的解集为( )A.x> B.x<﹣1 C.﹣1<x< D.x>﹣4.(3分)如果不等式组有解,则m的取值范围是( )A.m< B.m≤ C.m> D.m≥5.(3分)设“●■▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“●■▲”这三种物体质量从大到小顺序排列应为( )A.●■▲ B.▲■● C.■●▲ D.■▲● 二.专心填一填6.(3分)如果关于x的不等式(a﹣1)x<a+5的解集为x<4,则a的值为 .7.(3分)不等式组的解集为 .8.(3分)在平面直角坐标系中,已知点A(7﹣2m,5﹣m)在第二象限内,且m为整数,则A点坐标为 .9.(3分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了 道题.10.(3分)一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为 mg. 三.用心做一做11.解不等式:﹣≤. 12.解不等式组:. 13.求不等式组的整数解. 14.一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度v不变,v满足什么条件? 15.某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折销售,但要保证利润不低于10%,求至少要打几折(精确到0.1折). 四.潜心想一想16.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算? 17.为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表: 甲种货车乙种货车载货量(吨/辆)4530租金(元/辆)400300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.
参考答案与试题解析 一.选择题1.(3分)下列不等式组中,无解的是( )A. B.C. D.【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】分别根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:A、由①得:x<﹣,由②得:x>﹣,在数轴上表示为:,∴不等式组的解集为:空集即无解,符合题意;B、由①得:x<﹣,由②得:x>﹣,在数轴上表示为:,∴不等式组的解集为:﹣<x<﹣,不合题意;C、由①得:x>﹣,由②得:x>﹣,在数轴上表示为:,∴不等式组的解集为:x>﹣,不合题意;D、,由①得:x<﹣,由②得:x<﹣,在数轴上表示为:,∴不等式组的解集为:x<﹣,不合题意;故选:A.【点评】此题主要考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断. 2.(3分)若|x﹣1|=1﹣x,则x的值范围是( )A.x≤1 B.x<1 C.x≥1 D.x>1【考点】15:绝对值.【专题】11 :计算题.【分析】根据绝对值的意义由|x﹣1|=1﹣x得出x﹣1≤0,然后求解即可.【解答】解:∵|x﹣1|=1﹣x,∴x﹣1≤0,∴x≤1,故选A.【点评】本题考查了绝对值:,掌握若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a是本题的关键,是一道基础题. 3.(3分)不等式组的解集为( )A.x> B.x<﹣1 C.﹣1<x< D.x>﹣【考点】CB:解一元一次不等式组.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解答】解:,由①得:x>,由②得:x>﹣1,不等式组的解集为:x>,故选:A.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.(3分)如果不等式组有解,则m的取值范围是( )A.m< B.m≤ C.m> D.m≥【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】由①得x≤;由②得x≥m,故其解集为m≤x≤,即m≤.【解答】解:由①得:x≤由②得:x≥m∴其解集为m≤x≤∴m≤.故选B.【点评】解不等式组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则解答. 5.(3分)设“●■▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“●■▲”这三种物体质量从大到小顺序排列应为( )A.●■▲ B.▲■● C.■●▲ D.■▲●【考点】C2:不等式的性质.【专题】23 :新定义.【分析】根据第一个不等式,可得■与▲的关系,根据第二个不等式,可得●与■的关系,根据不等式的传递性,可得答案.【解答】解:第一个不等式,■<▲,根据第二个不等式,●<■,故选:B.【点评】本题考查了不等式的性质,不等式当传递性是解题关键. 二.专心填一填6.(3分)如果关于x的不等式(a﹣1)x<a+5的解集为x<4,则a的值为 3 .【考点】C3:不等式的解集.【专题】11 :计算题.【分析】根据已知不等式的解集得出a﹣1>0且=4,求出方程的解即可.【解答】解:∵关于x的不等式(a﹣1)x<a+5的解集为x<4,∴a﹣1>0且=4,解得:a=3,经检验a=3是所得方程的解,故答案为:3.【点评】本题考查了解分式方程,一元一次不等式的解集的应用,解此题的关键是得出a﹣1>0且=4. 7.(3分)不等式组的解集为 ﹣4<x<﹣3 .【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】分别解不等式,再将不等式的解利用数轴表示出,进而得出不等式组的解集.【解答】解:,解①得:x<2,解②得:x>﹣4,解③得:x<﹣3,在数轴上表示为:,∴不等式组的解集为:﹣4<x<﹣3.故答案为:﹣4<x<﹣3.【点评】此题主要考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断. 8.(3分)在平面直角坐标系中,已知点A(7﹣2m,5﹣m)在第二象限内,且m为整数,则A点坐标为 (﹣1,1) .【考点】D1:点的坐标;CC:一元一次不等式组的整数解.【专题】11 :计算题.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求出m的取值范围,再求出m的值,然后解答即可.【解答】解:∵点A(7﹣2m,5﹣m)在第二象限内,∴,解不等式①得,m>,解不等式②得,m<5,∴<m<5,∵m为整数,∴m=4,∴7﹣2m=7﹣2×4=﹣1,5﹣m=5﹣4=1,∴A点坐标为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 9.(3分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了 24 道题.【考点】C9:一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分或90分以上),即小明的得分≥90分,设小明答对了x题.就可以列出不等式,求出x的值.【解答】解:设小明答对了x题.故(30﹣x)×(﹣1)+4x≥90,解得:x≥24.故答案为:x≥24.【点评】解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分. 10.(3分)一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为 15mg<x<30 mg.【考点】C1:不等式的定义.【专题】11 :计算题.【分析】用60÷4,120÷4得到每天服用这种药的剂量.【解答】解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg<x<30.【点评】本题考查的是不等式的定义,本题需注意应找到每天服用60mg时4次每次的剂量;每天服用120mg时4次每次的剂量,然后找到最大值与最小值. 三.用心做一做11.解不等式:﹣≤.【考点】C6:解一元一次不等式.【专题】11 :计算题.【分析】不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集.【解答】解:去分母得:4(2x﹣1)﹣6(10﹣x)≤3x,去括号得:8x﹣4﹣60+6x≤3x,移项合并得:11x≤64,解得:x≤.【点评】此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解集. 12.解不等式组:.【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:,由①得:2x+2≥3x﹣3,解得:x≤5,由②得:3x>4(x﹣1),解得:x<4,在数轴上表示为:,∴不等式组的解集为:x<4.【点评】此题主要考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断. 13.求不等式组的整数解.【考点】CC:一元一次不等式组的整数解.【专题】11 :计算题.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x<3,解②得:x≥,则不等式组的解集是:3.则不等式组的整数解是:2.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 14.一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度v不变,v满足什么条件?【考点】C9:一元一次不等式的应用.【专题】12 :应用题.【分析】从B到A用了不到12小时,则可得从B到A 12小时走的路程大于从A到B 10小时走的路程,列出不等式求解即可.【解答】解:由题意得,从A到B的速度为:(v+3)千米/时,从B到A的速度为:(v﹣3)千米/时,∵从B地匀速返回A地用了不到12小时,∴12(v﹣3)>10(v+3),解得:v>33.答:v满足的条件是大于33千米/小时.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,得出不等关系,难度一般. 15.某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折销售,但要保证利润不低于10%,求至少要打几折(精确到0.1折).【考点】C9:一元一次不等式的应用.【专题】124:销售问题.【分析】利润率不低于10%,即利润要大于或等于800×10%元,设打x折,则售价是1200x元.根据利润率不低于10%就可以列出不等式,求出x的范围.【解答】解:设打x折,根据题意得出:则1200×﹣800≥800×10%,解得x≥7.33,答:要保证利润不低于10%,至少要打7.4折.【点评】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键. 四.潜心想一想16.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?【考点】C9:一元一次不等式的应用.【专题】128:优选方案问题.【分析】设单独租用54座客车需x辆.根据单独租用54座客车若干辆,则刚好坐满和全部租用72座客车,则可少租2辆车,并且所租用的客车中除有1辆车剩余不到一半的空位,其余车辆全部坐满列出一元一次不等式组,解答即可.【解答】解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.【点评】本题考查了一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式组. 17.为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表: 甲种货车乙种货车载货量(吨/辆)4530租金(元/辆)400300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.【考点】CE:一元一次不等式组的应用.【分析】先设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意列出不等式组,求出x的取值范围,再根据x为正整数,求出租车方案,再分别求出每种方案的费用,即可得出答案.【解答】解:设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意得:,解得:4≤x≤5,∵x为正整数,∴共有两种方案,方案1:租甲型货车4辆,乙型货车2辆,方案2:租甲型货车5辆,乙型货车1辆,方案1的费用为:4×400+2×300=2200元;方案2的费用为:5×400+1×300=2300元;2200<2300,则选择方案1最省钱,即最省钱的租车方案是租甲型货车4辆,乙型货车2辆.【点评】此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的数量关系列出不等式组,注意x为正整数.
相关试卷
这是一份初中数学人教七下第九章测试卷(3),共15页。试卷主要包含了不等式组的解集为 ,范围为 mg等内容,欢迎下载使用。
这是一份初中数学人教七下第九章测试卷(2),共14页。试卷主要包含了选择,填空,解不等式或不等式组,解答下列各题等内容,欢迎下载使用。
这是一份初中数学人教七下第九章测试卷(1),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。