年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021中考数学重难点专练:规律探究问题

    立即下载
    加入资料篮
    2021中考数学重难点专练:规律探究问题第1页
    2021中考数学重难点专练:规律探究问题第2页
    2021中考数学重难点专练:规律探究问题第3页
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021中考数学重难点专练:规律探究问题

    展开

    这是一份2021中考数学重难点专练:规律探究问题,共21页。试卷主要包含了对于题目,按一定规律排列的单项式,如图,过点A0,如图,在△OAB中,顶点O等内容,欢迎下载使用。
    一、 选择题
    1.下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是(  )

    A.上方 B.右方 C.下方 D.左方
    【答案】C
    【解析】如图所示:每旋转4次一周,2019÷4=504…3,
    则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.
    故选:C.
    2.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.
    甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.
    乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.
    丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.
    下列正确的是(  )

    A.甲的思路错,他的n值对
    B.乙的思路和他的n值都对
    C.甲和丙的n值都对
    D.甲、乙的思路都错,而丙的思路对
    【答案】B
    【解析】甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;
    乙的思路与计算都正确;
    乙的思路与计算都错误,图示情况不是最长;
    故选:B.
    3.如图,在平面直角坐标系中,点A1、A2、A3…An在x轴上,B1、B2、B3…Bn在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…Sn.则Sn可表示为(  )

    A.22n B.22n﹣1 C.22n﹣2 D.22n﹣3
    【答案】D
    【解析】
    ∵△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,
    ∴A1B1∥A2B2∥A3B3∥…∥AnBn,B1A2∥B2A3∥B3A4∥…∥BnAn+1,△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,
    ∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,
    ∴∠OB1A1=30°,
    ∴OA1=A1B1,
    ∵A1(1,0),
    ∴A1B1=1,
    同理∠OB2A2=30°,…,∠OBnAn=30°,
    ∴B2A2=OA2=2,B3A3=4,…,BnAn=2n﹣1,
    易得∠OB1A2=90°,…,∠OBnAn+1=90°,
    ∴B1B2=,B2B3=2,…,BnBn+1=2n,
    ∴S1=×1×=,S2=×2×2=2,…,Sn=×2n﹣1×2n=;
    故选:D.
    4.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点从为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点的纵坐标为  

    A. B. C.0 D.1
    【答案】B
    【解析】点运动一个用时为秒.
    如图,作于,与交于点.
    在中,,,



    第1秒时点运动到点,纵坐标为1;
    第2秒时点运动到点,纵坐标为0;
    第3秒时点运动到点,纵坐标为;
    第4秒时点运动到点,纵坐标为0;
    第5秒时点运动到点,纵坐标为1;

    点的纵坐标以1,0,,0四个数为一个周期依次循环,

    第2019秒时点的纵坐标为是.
    故选:B.
    5.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是(  )

    A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)
    【答案】A
    【解析】∵四边形OABC是正方形,且OA=1,
    ∴A(0,1),
    ∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
    ∴A1(,),A2(1,0),A3(,﹣),…,
    发现是8次一循环,所以2019÷8=252…余3,
    ∴点A2019的坐标为(,﹣)
    故选:A.

    6.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是(  )

    A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)
    【答案】C
    【解析】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,
    2019÷4=504…3,
    所以A2019的坐标为(504×2+1,0),
    则A2019的坐标是(1009,0).
    故选:C.
    7.按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是(  )
    A.(﹣1)n﹣1x2n﹣1 B.(﹣1)nx2n﹣1
    C.(﹣1)n﹣1x2n+1 D.(﹣1)nx2n+1
    【答案】A
    【解析】∵x3=(﹣1)1﹣1x2×1+1,
    ﹣x5=(﹣1)2﹣1x2×2+1,
    x7=(﹣1)3﹣1x2×3+1,
    ﹣x9=(﹣1)4﹣1x2×4+1,
    x11=(﹣1)5﹣1x2×5+1,
    ……
    由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,
    故选:A.
    8.如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为(  )

    A.()100 B.(3)100 C.3×4199 D.3×2395
    【答案】D
    【解析】∵点A0的坐标是(0,1),
    ∴OA0=1,
    ∵点A1在直线y=x上,
    ∴OA1=2,A0A1=,
    ∴OA2=4,
    ∴OA3=8,
    ∴OA4=16,
    得出OAn=2n,
    ∴AnAn+1=2n•,
    ∴OA198=2198,A198A199=2198•,
    ∵S1=(4﹣1)•=,
    ∵A2A1∥A200A199,
    ∴△A0A1A2∽△A198A199A200,
    ∴=()2,
    ∴S=2396•=3×2395
    故选:D.
    9.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为(  )

    A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)
    【答案】D
    【解析】∵A(﹣3,4),B(3,4),
    ∴AB=3+3=6,
    ∵四边形ABCD为正方形,
    ∴AD=AB=6,
    ∴D(﹣3,10),
    ∵70=4×17+2,
    ∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,
    ∴点D的坐标为(3,﹣10).
    故选:D.
    10.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:
    ①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;
    ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为(  )

    A.22019 B. C. D.
    【答案】C
    【解析】正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,
    第一次:余下面积,
    第二次:余下面积,
    第三次:余下面积,
    当完成第2019次操作时,余下纸片的面积为,
    故选:C.
    二、填空题
    11.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是   .

    【答案】(2n﹣1)
    【解析】由题意可得,
    点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,
    ∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,
    ∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+Cn﹣1An)=(1+2+4+8+…+2n﹣1),
    设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,
    则2S﹣S=2n﹣1,
    ∴S=2n﹣1,
    ∴1+2+4+8+…+2n﹣1=2n﹣1,
    ∴前n个正方形对角线长的和是:×(2n﹣1),
    故答案为:(2n﹣1),
    12.如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为   .(n为正整数)

    【答案】(n,)
    【解析】连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:
    在Rt△OA1P1中,OA1=1,OP1=2,
    ∴A1P1===,
    同理:A2P2==,A3P3==,……,
    ∴P1的坐标为( 1,),P2的坐标为( 2,),P3的坐标为(3,),……,
    …按照此规律可得点Pn的坐标是(n,),即(n,)
    故答案为:(n,).
    13.如图,由两个长为2,宽为1的长方形组成“7”字图形。
    (1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为 .
    (2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第a个“7”字图形得顶点Fn-1,…,则顶点F2019的坐标为 .

    【答案】(1) (2)(,)
    【解析】(1)依题意可得,CD=1,CB=2
    ∵∠BDC+∠DBC=90° ,∠OBA+∠DBC=90°
    ∴∠BDC=∠OBA
    又∠DCB=∠BOA=90°
    ∴△DCB ∽ △ BOA

    根据题意标好字母,如图所示

    依题意可得CD=1,CB=2,BA=1∴BD=
    由(1)知,∴OB=,OA=
    易得△OAB ∽ △ GFA ∽ △ HCB
    ∴BH=,CH=,AG=,FG=
    ∴OH=+=,OG=+=
    ∴C(,).F(,)
    ∴由点C到点F横坐标增加了,纵坐标增加了,
    ……
    ∴,Fn(+n, +n)
    ∴F2019(+×2019, +×2019)
    即F2019(, 405)
    14.如图,在矩形中,,,一发光电子开始置于边的点处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于,若发光电子与矩形的边碰撞次数经过2019次后,则它与边的碰撞次数是  .

    【答案】672
    【解析】如图,

    根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点,且每次循环它与边的碰撞有2次,

    当点第2019次碰到矩形的边时为第337个循环组的第3次反弹,点的坐标为
    它与边的碰撞次数是次,故答案为672
    15.正方形,,,按如图所示的方式放置,点,,,和点,,,分别在直线和轴上.已知点,点,则的坐标是  .

    【答案】(47,16)
    【解析】由题意可知纵坐标为1,的纵坐标为2,的纵坐标为4,的纵坐标为8,,
    和,和,和,和的纵坐标相同,
    ,,,,的纵坐标分别为1,2,4,8,16,
    根据图象得出,,,
    直线的解析式为,
    的纵坐标为16,
    的纵坐标为16,
    把代入,解得,
    的坐标是,
    故答案为.

    三、解答题
    16.
    (1)阅读理解
    如图,点A,B在反比例函数y=的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数y=的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1).
    小红通过观察反比例函数y=的图象,并运用几何知识得出结论:
    AE+BG=2CF,CF>DF
    由此得出一个关于,,,之间数量关系的命题:
    若n>1,则   .
    (2)证明命题小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题.
    小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.
    请你选择一种方法证明(1)中的命题.

    【解析】(1)∵AE+BG=2CF,CF>DF,AE=,BG=,DF=,
    ∴+>.
    故答案为:+>.
    (2)方法一:∵+﹣==,
    ∵n>1,
    ∴n(n﹣1)(n+1)>0,
    ∴+﹣>0,
    ∴+>.
    方法二:∵=>1,
    ∴+>.

    17.
    (1)方法选择
    如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.
    小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…
    小军认为可用补短法证明:延长CD至点N,使得DN=AD…
    请你选择一种方法证明.
    (2)类比探究
    探究1
    如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.
    探究2
    如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是   .
    (3)拓展猜想
    如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是   .

    【解析】(1)方法选择:∵AB=BC=AC,
    ∴∠ACB=∠ABC=60°,
    如图①,在BD上截取DEMAD,连接AM,
    ∵∠ADB=∠ACB=60°,
    ∴△ADM是等边三角形,
    ∴AM=AD,
    ∵∠ABM=∠ACD,
    ∵∠AMB=∠ADC=120°,
    ∴△ABM≌△ACD(AAS),
    ∴BM=CD,
    ∴BD=BM+DM=CD+AD;
    (2)类比探究:如图②,
    ∵BC是⊙O的直径,
    ∴∠BAC=90°,
    ∵AB=AC,
    ∴∠ABC=∠ACB=45°,
    过A作AM⊥AD交BD于M,
    ∵∠ADB=∠ACB=45°,
    ∴△ADM是等腰直角三角形,
    ∴AM=AD,∠AMD=45°,
    ∴DM=AD,
    ∴∠AMB=∠ADC=135°,
    ∵∠ABM=∠ACD,
    ∴△ABM≌△ACD(AAS),
    ∴BM=CD,
    ∴BD=BM+DM=CD+AD;
    探究2如图③,∵若BC是⊙O的直径,∠ABC=30°,
    ∴∠BAC=90°,∠ACB=60°,
    过A作AM⊥AD交BD于M,
    ∵∠ADB=∠ACB=60°,
    ∴∠AMD=30°,
    ∴MD=2AD,
    ∵∠ABD=∠ACD,∠AMB=∠ADC=150°,
    ∴△ABM∽△ACD,
    ∴=,
    ∴BM=CD,
    ∴BD=BM+DM=CD+2AD;
    故答案为:BD=CD+2AD;
    (3)拓展猜想:BD=BM+DM=CD+AD;
    理由:如图④,∵若BC是⊙O的直径,
    ∴∠BAC=90°,
    过A作AM⊥AD交BD于M,
    ∴∠MAD=90°,
    ∴∠BAM=∠DAC,
    ∴△ABM∽△ACD,
    ∴=,
    ∴BM=CD,
    ∵∠ADB=∠ACB,∠BAC=∠NAD=90°,
    ∴△ADM∽△ACB,
    ∴==,
    ∴DM=AD,
    ∴BD=BM+DM=CD+AD.
    故答案为:BD=CD+AD

    18.(1)如图1,在平行四边形中,,,,将平行四边形分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)
    (2)若将一边长为1的正方形按如图所示剪开,恰好能拼成如图所示的矩形,则的值是多少?
    (3)四边形是一个长为7,宽为5的矩形(面积为,若把它按如图所示的方式剪开,分成四部分,重新拼成如图所示的图形,得到一个长为9,宽为4的矩形(面积为.问:重新拼成的图形的面积为什么会增加?请说明理由.

    【解析】(1)如图所示:

    (2)依题意有

    解得,(负值舍去),
    经检验,是原方程的解.
    故的值是;
    (3),
    直角三角形的斜边与直角梯形的斜腰不在一条直线上,
    故重新拼成的图形的面积会增加.

    相关试卷

    中考数学重难点01 规律探究与新定义型问题(2类型+10题型):

    这是一份中考数学重难点01 规律探究与新定义型问题(2类型+10题型),文件包含重难点01规律探究与新定义型问题2类型+10题型原卷版docx、重难点01规律探究与新定义型问题2类型+10题型解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。

    重难点07 函数类综合问题-2023年中考数学【热点·重点·难点】专练(全国通用):

    这是一份重难点07 函数类综合问题-2023年中考数学【热点·重点·难点】专练(全国通用),文件包含重难点07函数类综合问题解析版docx、重难点07函数类综合问题原卷版docx等2份试卷配套教学资源,其中试卷共119页, 欢迎下载使用。

    重难点06 几何类综合问题-2023年中考数学【热点·重点·难点】专练(全国通用):

    这是一份重难点06 几何类综合问题-2023年中考数学【热点·重点·难点】专练(全国通用),文件包含重难点06几何类综合问题解析版docx、重难点06几何类综合问题原卷版docx等2份试卷配套教学资源,其中试卷共133页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map